These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20340135)

  • 21. Epimerase and Reductase Activities of Polyketide Synthase Ketoreductase Domains Utilize the Same Conserved Tyrosine and Serine Residues.
    Xie X; Garg A; Keatinge-Clay AT; Khosla C; Cane DE
    Biochemistry; 2016 Mar; 55(8):1179-86. PubMed ID: 26863427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of Pseudomonas aeruginosa guanidinobutyrase and guanidinopropionase, members of the ureohydrolase superfamily.
    Lee SJ; Kim DJ; Kim HS; Lee BI; Yoon HJ; Yoon JY; Kim KH; Jang JY; Im HN; An DR; Song JS; Kim HJ; Suh SW
    J Struct Biol; 2011 Sep; 175(3):329-38. PubMed ID: 21600989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes in a plant ketol-acid reductoisomerase upon Mg(2+) and NADPH binding as revealed by two crystal structures.
    Leung EW; Guddat LW
    J Mol Biol; 2009 May; 389(1):167-82. PubMed ID: 19362563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insight into MtmC, a bifunctional ketoreductase-methyltransferase involved in the assembly of the mithramycin trisaccharide chain.
    Chen JM; Hou C; Wang G; Tsodikov OV; Rohr J
    Biochemistry; 2015 Apr; 54(15):2481-9. PubMed ID: 25587924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional diversity of YbbN/CnoX proteins: Insights from a comparative analysis of three thioredoxin-like oxidoreductases from Pseudomonas aeruginosa, Xylella fastidiosa and Escherichia coli.
    Meireles DA; Yokomizo CH; Silva FP; Venâncio TM; Degenhardt MFS; Oliveira CLP; Netto LES
    Redox Biol; 2024 Jun; 72():103128. PubMed ID: 38554523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the γ-hydroxymuconic semialdehyde dehydrogenase from Pseudomonas sp. strainWBC-3, a key enzyme involved in para-Nitrophenol degradation.
    Su J; Zhang C; Zhang JJ; Wei T; Zhu D; Zhou NY; Gu Lc
    BMC Struct Biol; 2013 Nov; 13():30. PubMed ID: 24252642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization of the Pseudomonas aeruginosa dehydrogenase AtuB involved in citronellol and geraniol catabolism.
    Chen Y; Jia H; Liang Y; Zhang H; Che S; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2020 Mar; 523(4):954-960. PubMed ID: 31964529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of a sequestered imine intermediate during reduction of nitrile to amine by the nitrile reductase QueF from
    Jung J; Nidetzky B
    J Biol Chem; 2018 Mar; 293(10):3720-3733. PubMed ID: 29339556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of 3 alpha-hydroxysteroid dehydrogenase.
    Penning TM; Bennett MJ; Smith-Hoog S; Schlegel BP; Jez JM; Lewis M
    Steroids; 1997 Jan; 62(1):101-11. PubMed ID: 9029723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU.
    Chiang P; Sampaleanu LM; Ayers M; Pahuta M; Howell PL; Burrows LL
    Microbiology (Reading); 2008 Jan; 154(Pt 1):114-126. PubMed ID: 18174131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of iridoid synthase in complex with NADP(+)/8-oxogeranial reveals the structural basis of its substrate specificity.
    Qin L; Zhu Y; Ding Z; Zhang X; Ye S; Zhang R
    J Struct Biol; 2016 May; 194(2):224-30. PubMed ID: 26868105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex.
    Whitby FG; Phillips JD; Hill CP; McCoubrey W; Maines MD
    J Mol Biol; 2002 Jun; 319(5):1199-210. PubMed ID: 12079357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP.
    Kingston RL; Scopes RK; Baker EN
    Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases.
    Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R
    Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
    Sato M; Liebschner D; Yamada Y; Matsugaki N; Arakawa T; Wills SS; Hattie M; Stubbs KA; Ito T; Senda T; Ashida H; Fushinobu S
    J Biol Chem; 2017 Jul; 292(29):12126-12138. PubMed ID: 28546425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase.
    McFarlane JS; Davis CL; Lamb AL
    J Biol Chem; 2018 May; 293(21):8009-8019. PubMed ID: 29618515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.