These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2034038)

  • 1. Intracellular chloride in submucosal gland cells.
    Dwyer TM; Farley JM
    Life Sci; 1991; 48(22):2119-27. PubMed ID: 2034038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of cyclic adenosine monophosphate-stimulated chloride channel activity in human cystic fibrosis tracheobronchial submucosal gland cells by adenovirus-mediated and cationic lipid-mediated gene transfer.
    Jiang C; Finkbeiner WE; Widdicombe JH; Fang SL; Wang KX; Nietupski JB; Hehir KM; Cheng SH
    Am J Respir Cell Mol Biol; 1999 Jun; 20(6):1107-15. PubMed ID: 10340929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride transport mechanism in swine tracheal submucosal gland cells.
    Nishikawa K; Ishihara H; Ozawa K; Tamura K
    Respiration; 1995; 62(5):274-9. PubMed ID: 8560095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.
    Joo NS; Wine JJ; Cuthbert AW
    Am J Physiol Lung Cell Mol Physiol; 2009 May; 296(5):L811-24. PubMed ID: 19233902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis.
    Jiang C; Finkbeiner WE; Widdicombe JH; Miller SS
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):637-47. PubMed ID: 9218222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cl- permeability of human sweat duct cells monitored with fluorescence-digital imaging microscopy: evidence for reduced plasma membrane Cl- permeability in cystic fibrosis.
    Ram SJ; Kirk KL
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):10166-70. PubMed ID: 2602364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine-stimulated chloride flux in tracheal submucosal gland cells.
    Yang CM; Farley JM; Dwyer TM
    J Appl Physiol (1985); 1988 Oct; 65(4):1891-4. PubMed ID: 3141366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands.
    Jacquot J; Puchelle E; Hinnrasky J; Fuchey C; Bettinger C; Spilmont C; Bonnet N; Dieterle A; Dreyer D; Pavirani A
    Eur Respir J; 1993 Feb; 6(2):169-76. PubMed ID: 7680322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HCO3- transport in relation to mucus secretion from submucosal glands.
    Joo NS; Krouse ME; Wu JV; Saenz Y; Jayaraman S; Verkman AS; Wine JJ
    JOP; 2001 Jul; 2(4 Suppl):280-4. PubMed ID: 11875272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride secretion by cultures of pig tracheal gland cells.
    Widdicombe JH; Borthwell RM; Hajighasemi-Ossareh M; Lachowicz-Scroggins ME; Finkbeiner WE; Stevens JE; Modlin S
    Am J Physiol Lung Cell Mol Physiol; 2012 May; 302(10):L1098-106. PubMed ID: 22367783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion transport by tracheal epithelial cells in culture.
    Widdicombe JH
    Clin Chest Med; 1986 Jun; 7(2):299-305. PubMed ID: 3522074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salmeterol restores secretory functions in cystic fibrosis airway submucosal gland serous cells.
    Delavoie F; Molinari M; Milliot M; Zahm JM; Coraux C; Michel J; Balossier G
    Am J Respir Cell Mol Biol; 2009 Apr; 40(4):388-97. PubMed ID: 18931328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells.
    Baconnais S; Delavoie F; Zahm JM; Milliot M; Terryn C; Castillon N; Banchet V; Michel J; Danos O; Merten M; Chinet T; Zierold K; Bonnet N; Puchelle E; Balossier G
    Exp Cell Res; 2005 Oct; 309(2):296-304. PubMed ID: 16051214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered ion transport by tracheal glands in cystic fibrosis.
    Yamaya M; Finkbeiner WE; Widdicombe JH
    Am J Physiol; 1991 Dec; 261(6 Pt 1):L491-4. PubMed ID: 1767868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual mechanisms for Na-K-Cl cotransport regulation in airway epithelial cells.
    Haas M; McBrayer DG; Yankaskas JR
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C189-200. PubMed ID: 8430766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride and potassium channels in cystic fibrosis airway epithelia.
    Welsh MJ; Liedtke CM
    Nature; 1986 Jul 31-Aug 6; 322(6078):467-70. PubMed ID: 2426598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of the development of tracheal submucosal glands in infants with cystic fibrosis and control infants.
    Sturgess J; Imrie J
    Am J Pathol; 1982 Mar; 106(3):303-11. PubMed ID: 7065115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The uptake of radiolabelled precursors of mucus glycoconjugates by secretory tissues in the feline trachea.
    Davies JR; Corbishley CM; Richardson PS
    J Physiol; 1990 Jan; 420():19-30. PubMed ID: 2324983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and function of A1 adenosine receptors in normal and cystic fibrosis human airway epithelial cells.
    McCoy DE; Schwiebert EM; Karlson KH; Spielman WS; Stanton BA
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1520-7. PubMed ID: 7611373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostanoids secreted by alveolar macrophages enhance ionic currents in swine tracheal submucosal gland cells.
    Liu H; Mamoon AM; Farley JM
    J Pharmacol Exp Ther; 2005 Nov; 315(2):729-39. PubMed ID: 16055675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.