These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 203409)

  • 1. Sterol metabolism. XL. On the failure of superoxide radical anion to react with cholesterol.
    Smith LL; Kulig MJ; Teng JI
    Chem Phys Lipids; 1977 Nov; 20(3):211-5. PubMed ID: 203409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of modification of cytochrome c on its reactions with superoxide and NADPH:cytochrome P-450 reductase.
    Finkelstein E; Rosen GM; Patton SE; Cohen MS; Rauckman EJ
    Biochem Biophys Res Commun; 1981 Oct; 102(3):1008-15. PubMed ID: 6272810
    [No Abstract]   [Full Text] [Related]  

  • 5. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation.
    Morehouse LA; Thomas CE; Aust SD
    Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticosteroids increase superoxide anion production by rat liver microsomes.
    Nelson DH; Ruhmann-Wennhold A
    J Clin Invest; 1975 Oct; 56(4):1062-5. PubMed ID: 239969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen.
    Singh A
    Can J Physiol Pharmacol; 1982 Nov; 60(11):1330-45. PubMed ID: 6295572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoconjugated hypocrellin: photosensitized generation of free radicals (O2*-, *OH, and GHB*-) and singlet oxygen (1O2).
    Yuying H; Jingyi A; Lijin J
    Free Radic Biol Med; 1999 Jul; 27(1-2):203-12. PubMed ID: 10443937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for the generation of superoxide anion and singlet oxygen during heme compound-catalyzed linoleic acid hydroperoxide decomposition.
    Koga S; Nakano M; Uehara K
    Arch Biochem Biophys; 1991 Sep; 289(2):223-9. PubMed ID: 1654851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide.
    Gergel D; Misík V; Riesz P; Cederbaum AI
    Arch Biochem Biophys; 1997 Jan; 337(2):239-50. PubMed ID: 9016819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acyl dehydroalanines scavenge oxygen radicals and inhibit in vitro free radical mediated processes.
    Buc-Calderon P; Sipe HJ; Flitter W; Mason RP; Roberfroid M
    Chem Biol Interact; 1990; 73(1):77-88. PubMed ID: 2154337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water induced dismutation of superoxide anion generates singlet molecular oxygen.
    Corey EJ; Mehrotra MM; Khan AU
    Biochem Biophys Res Commun; 1987 Jun; 145(2):842-6. PubMed ID: 3036142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide anion production during monoelectronic reduction of xenobiotics by preparations of rat brain cortex, microvessels, and choroid plexus.
    Lagrange P; Livertoux MH; Grassiot MC; Minn A
    Free Radic Biol Med; 1994 Oct; 17(4):355-9. PubMed ID: 8001839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation.
    Minakami H; Arai H; Nakano M; Sugioka K; Suzuki S; Sotomatsu A
    Biochem Biophys Res Commun; 1988 Jun; 153(3):973-8. PubMed ID: 2839175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and measurement of drug-induced oxygen radical formation.
    Smith MT; Thor H; Orrenius S
    Methods Enzymol; 1984; 105():505-10. PubMed ID: 6328200
    [No Abstract]   [Full Text] [Related]  

  • 18. An effect of corticosteroids and 100% oxygen on aryl hydrocarbon hydroxylase, cytochrome-c reductase, and free radical formation by rat lung microsomes.
    Ruhmann-Wennhold A; Nelson DH
    Metabolism; 1978 Sep; 27(9):1013-22. PubMed ID: 210349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P-450 reductase.
    Sinha BK; Singh Y; Krishna G
    Biochem Biophys Res Commun; 1986 Mar; 135(2):583-8. PubMed ID: 3008728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.