BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20345093)

  • 1. Perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species: role of ClxOy radicals.
    Rao B; Anderson TA; Redder A; Jackson WA
    Environ Sci Technol; 2010 Apr; 44(8):2961-7. PubMed ID: 20345093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perchlorate production by photodecomposition of aqueous chlorine solutions.
    Rao B; Estrada N; McGee S; Mangold J; Gu B; Jackson WA
    Environ Sci Technol; 2012 Nov; 46(21):11635-43. PubMed ID: 22962844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perchlorate production by ozone oxidation of chloride in aqueous and dry systems.
    Kang N; Jackson WA; Dasgupta PK; Anderson TA
    Sci Total Environ; 2008 Nov; 405(1-3):301-9. PubMed ID: 18722000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multiple roles of chlorite on the concentrations of radicals and ozone and formation of chlorate during UV photolysis of free chlorine.
    Zhao J; Shang C; Zhang X; Yang X; Yin R
    Water Res; 2021 Feb; 190():116680. PubMed ID: 33285457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione.
    Ison A; Odeh IN; Margerum DW
    Inorg Chem; 2006 Oct; 45(21):8768-75. PubMed ID: 17029389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.
    Wenk J; Aeschbacher M; Salhi E; Canonica S; von Gunten U; Sander M
    Environ Sci Technol; 2013 Oct; 47(19):11147-56. PubMed ID: 23978074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetic studies.
    Jung YJ; Baek KW; Oh BS; Kang JW
    Water Res; 2010 Oct; 44(18):5345-55. PubMed ID: 20619871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
    Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide.
    Guo Y; Huang T; Wen G; Cao X
    J Environ Sci (China); 2015 Aug; 34():20-7. PubMed ID: 26257342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment.
    Dodd MC; Vu ND; Ammann A; Le VC; Kissner R; Pham HV; Cao TH; Berg M; Von Gunten U
    Environ Sci Technol; 2006 May; 40(10):3285-92. PubMed ID: 16749695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of pharmaceuticals during water treatment with chlorine dioxide.
    Huber MM; Korhonen S; Ternes TA; von Gunten U
    Water Res; 2005 Sep; 39(15):3607-17. PubMed ID: 16061268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradability of organic by-products after natural organic matter oxidation with ClO2--case study.
    Raczyk-Stanisławiak U; Swietlik J; Dabrowska A; Nawrocki J
    Water Res; 2004 Feb; 38(4):1044-54. PubMed ID: 14769425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control effects of p(epsilon) and pH on the generation and stability of chlorine dioxide.
    Pei YS; Wu XQ; Luan ZK; Wang T
    J Environ Sci (China); 2003 Sep; 15(5):680-4. PubMed ID: 14562931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate of dibutylsulfide decomposition by ozonation and the O3/H2O2 advanced oxidation process.
    Popiel S; Nalepa T; Dzierzak D; Stankiewicz R; Witkiewicz Z
    J Hazard Mater; 2009 May; 164(2-3):1364-71. PubMed ID: 18977083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of active chlorine on photooxidation of 2-methyl-2-butene.
    Im Y; Jang M; Delcomyn CA; Henley MV; Hearn JD
    Sci Total Environ; 2011 Jun; 409(13):2652-61. PubMed ID: 21524786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.
    Son H; Cho M; Kim J; Oh B; Chung H; Yoon J
    Water Res; 2005 Feb; 39(4):721-7. PubMed ID: 15707645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative transformations of environmental pharmaceuticals by Cl₂, ClO₂, O₃, and Fe(VI): kinetics assessment.
    Sharma VK
    Chemosphere; 2008 Nov; 73(9):1379-86. PubMed ID: 18849059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-oxygenation of thiocarbamides I: Oxidation of phenylthiourea by chlorite in acidic media.
    Chigwada TR; Chikwana E; Simoyi RH
    J Phys Chem A; 2005 Feb; 109(6):1081-93. PubMed ID: 16833417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant.
    Cherney DP; Duirk SE; Tarr JC; Collette TW
    Appl Spectrosc; 2006 Jul; 60(7):764-72. PubMed ID: 16854264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.