These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20345122)

  • 1. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.
    Bonnot K; Bernhardt P; Hassler D; Baras C; Comet M; Keller V; Spitzer D
    Anal Chem; 2010 Apr; 82(8):3389-93. PubMed ID: 20345122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace Explosives Vapor Generation and Quantitation at Parts per Quadrillion Concentrations.
    Giordano BC; Field CR; Andrews B; Lubrano A; Woytowitz M; Rogers D; Collins GE
    Anal Chem; 2016 Apr; 88(7):3747-53. PubMed ID: 26971624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct detection of RDX vapor using a conjugated polymer network.
    Gopalakrishnan D; Dichtel WR
    J Am Chem Soc; 2013 Jun; 135(22):8357-62. PubMed ID: 23641956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction and determination of trace amounts of energetic compounds in blood by gas chromatography with electron capture detection (GC/ECD).
    Zhang B; Pan X; Smith JN; Anderson TA; Cobb GP
    Talanta; 2007 Apr; 72(2):612-9. PubMed ID: 19071663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A NIST standard reference material (SRM) to support the detection of trace explosives.
    MacCrehan WA
    Anal Chem; 2009 Sep; 81(17):7189-96. PubMed ID: 19637901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A portable fluorescence detector for fast ultra trace detection of explosive vapors.
    Xin Y; He G; Wang Q; Fang Y
    Rev Sci Instrum; 2011 Oct; 82(10):103102. PubMed ID: 22047275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-optical determination of vapor pressures of TNT and RDX nanofilms.
    Hikal WM; Paden JT; Weeks BL
    Talanta; 2011 Dec; 87():290-4. PubMed ID: 22099681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of munition contaminants.
    Reifenrath WG; Kammen HO; Reddy G; Major MA; Leach GJ
    J Toxicol Environ Health A; 2008; 71(8):486-94. PubMed ID: 18338283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil.
    Pon Saravanan N; Venugopalan S; Senthilkumar N; Santhosh P; Kavita B; Gurumallesh Prabu H
    Talanta; 2006 May; 69(3):656-62. PubMed ID: 18970618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test method for vapor collection and ion mobility detection of explosives with low vapor pressure.
    Son CE; Choi HR; Choi SS
    Rapid Commun Mass Spectrom; 2023 Dec; 37(23):e9645. PubMed ID: 37942691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate dynamics of environmentally exposed explosive traces.
    Kunz RR; Gregory KE; Aernecke MJ; Clark ML; Ostrinskaya A; Fountain AW
    J Phys Chem A; 2012 Apr; 116(14):3611-24. PubMed ID: 22424334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment on "Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection".
    Grate JW; Ewing RG; Atkinson DA
    Anal Chem; 2013 Mar; 85(5):3013-5; discussion 3016. PubMed ID: 23402367
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of pressurized liquid extraction (PLE)/gas chromatography-electron capture detection (GC-ECD) for the determination of biodegradation intermediates of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils.
    Zhang B; Pan X; Cobb GP; Anderson TA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Sep; 824(1-2):277-82. PubMed ID: 16112625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and analysis of trace amounts of cyclonite (RDX) and its nitroso-metabolites in animal liver tissue using gas chromatography with electron capture detection (GC-ECD).
    Pan X; Zhang B; Cobb GP
    Talanta; 2005 Oct; 67(4):816-23. PubMed ID: 18970244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-aerosol detection of explosives with a continuous flow immunosensor.
    Shriver-Lake LC; Charles PT; Kusterbeck AW
    Anal Bioanal Chem; 2003 Oct; 377(3):550-5. PubMed ID: 12920500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.