These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 20345145)
1. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. Yan JM; Zhang XB; Akita T; Haruta M; Xu Q J Am Chem Soc; 2010 Apr; 132(15):5326-7. PubMed ID: 20345145 [TBL] [Abstract][Full Text] [Related]
2. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. Yang L; Luo W; Cheng G ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435 [TBL] [Abstract][Full Text] [Related]
3. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Jiang HL; Umegaki T; Akita T; Zhang XB; Haruta M; Xu Q Chemistry; 2010 Mar; 16(10):3132-7. PubMed ID: 20127771 [TBL] [Abstract][Full Text] [Related]
4. Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. Zhang XB; Yan JM; Han S; Shioyama H; Xu Q J Am Chem Soc; 2009 Mar; 131(8):2778-9. PubMed ID: 19239265 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Liu G; Wang D; Zhou F; Liu W Small; 2015 Jun; 11(23):2807-16. PubMed ID: 25649419 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chen G; Desinan S; Rosei R; Rosei F; Ma D Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444 [TBL] [Abstract][Full Text] [Related]
7. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. Metin O; Mazumder V; Ozkar S; Sun S J Am Chem Soc; 2010 Feb; 132(5):1468-9. PubMed ID: 20078051 [TBL] [Abstract][Full Text] [Related]
9. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation. Zhang H; Okuni J; Toshima N J Colloid Interface Sci; 2011 Feb; 354(1):131-8. PubMed ID: 21067768 [TBL] [Abstract][Full Text] [Related]
10. A one-pot protocol for synthesis of non-noble metal-based core-shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3. Jiang HL; Akita T; Xu Q Chem Commun (Camb); 2011 Oct; 47(39):10999-1001. PubMed ID: 21909589 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst. Caliskan S; Zahmakiran M; Durap F; Özkar S Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of hierarchical core-shell Fe3O4@MgAl-LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Mi F; Chen X; Ma Y; Yin S; Yuan F; Zhang H Chem Commun (Camb); 2011 Dec; 47(48):12804-6. PubMed ID: 22068662 [TBL] [Abstract][Full Text] [Related]
13. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. Jiang HL; Akita T; Ishida T; Haruta M; Xu Q J Am Chem Soc; 2011 Feb; 133(5):1304-6. PubMed ID: 21214205 [TBL] [Abstract][Full Text] [Related]
14. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core. Zeng J; Yang J; Lee JY; Zhou W J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Yan JM; Zhang XB; Han S; Shioyama H; Xu Q Inorg Chem; 2009 Aug; 48(15):7389-93. PubMed ID: 19722696 [TBL] [Abstract][Full Text] [Related]
16. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. Zahmakiran M; Ozkar S Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane. Qiu F; Liu G; Li L; Wang Y; Xu C; An C; Chen C; Xu Y; Huang Y; Wang Y; Jiao L; Yuan H Chemistry; 2014 Jan; 20(2):505-9. PubMed ID: 24302541 [TBL] [Abstract][Full Text] [Related]
19. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. Wang S; Zhang D; Ma Y; Zhang H; Gao J; Nie Y; Sun X ACS Appl Mater Interfaces; 2014 Aug; 6(15):12429-35. PubMed ID: 25058566 [TBL] [Abstract][Full Text] [Related]
20. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]