These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 20345151)
21. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO. Munoz M; Nieto-Sandoval J; Cirés S; de Pedro ZM; Quesada A; Casas JA Water Res; 2019 Oct; 163():114853. PubMed ID: 31310856 [TBL] [Abstract][Full Text] [Related]
22. Degradation of microcystin-LR and cylindrospermopsin by continuous flow UV-A photocatalysis over immobilised TiO Camacho-Muñoz D; Fervers AS; Pestana CJ; Edwards C; Lawton LA J Environ Manage; 2020 Dec; 276():111368. PubMed ID: 32942219 [TBL] [Abstract][Full Text] [Related]
23. Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems. Parker KM; Reichwaldt ES; Ghadouani A; Mitch WA Environ Sci Technol; 2016 Aug; 50(16):8505-13. PubMed ID: 27447196 [TBL] [Abstract][Full Text] [Related]
24. Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Fraga M; Vilariño N; Louzao MC; Rodríguez LP; Alfonso A; Campbell K; Elliott CT; Taylor P; Ramos V; Vasconcelos V; Botana LM Anal Chim Acta; 2014 Nov; 850():57-64. PubMed ID: 25441160 [TBL] [Abstract][Full Text] [Related]
25. Neurotoxic assessment of Microcystin-LR, cylindrospermopsin and their combination on the human neuroblastoma SH-SY5Y cell line. Hinojosa MG; Prieto AI; Gutiérrez-Praena D; Moreno FJ; Cameán AM; Jos A Chemosphere; 2019 Jun; 224():751-764. PubMed ID: 30851527 [TBL] [Abstract][Full Text] [Related]
26. Ultraviolet photosensitized transformation mechanism of microcystin-LR by natural organic matter in raw water. Sun Q; Zhang T; Wang F; Liu C; Wu C; Xie RR; Zheng Y Chemosphere; 2018 Oct; 209():96-103. PubMed ID: 29913404 [TBL] [Abstract][Full Text] [Related]
27. Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Fastner J; Rücker J; Stüken A; Preussel K; Nixdorf B; Chorus I; Köhler A; Wiedner C Environ Toxicol; 2007 Feb; 22(1):26-32. PubMed ID: 17295278 [TBL] [Abstract][Full Text] [Related]
28. New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin. Sano T; Kikuchi S; Kubo T; Takagi H; Hosoya K; Kaya K Toxicon; 2008 Mar; 51(4):717-9. PubMed ID: 18187178 [TBL] [Abstract][Full Text] [Related]
29. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms. He X; de la Cruz AA; Hiskia A; Kaloudis T; O'Shea K; Dionysiou DD Water Res; 2015 May; 74():227-38. PubMed ID: 25744186 [TBL] [Abstract][Full Text] [Related]
30. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Moosova Z; Pekarova M; Sindlerova LS; Vasicek O; Kubala L; Blaha L; Adamovsky O Chemosphere; 2019 Jul; 226():439-446. PubMed ID: 30951938 [TBL] [Abstract][Full Text] [Related]
33. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Gutiérrez-Praena D; Jos Á; Pichardo S; Moreno IM; Cameán AM Food Chem Toxicol; 2013 Mar; 53():139-52. PubMed ID: 23200893 [TBL] [Abstract][Full Text] [Related]
34. Retention and degradation of the cyanobacterial toxin cylindrospermopsin in sediments - the role of sediment preconditioning and DOM composition. Klitzke S; Apelt S; Weiler C; Fastner J; Chorus I Toxicon; 2010 May; 55(5):999-1007. PubMed ID: 19596023 [TBL] [Abstract][Full Text] [Related]
35. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Ibelings BW; Havens KE Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789 [TBL] [Abstract][Full Text] [Related]
36. Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapis alba L.) seedlings. Máthé C; Vasas G; Borbély G; Erdődi F; Beyer D; Kiss A; Surányi G; Gonda S; Jámbrik K; M-Hamvas M Acta Biol Hung; 2013 Mar; 64(1):71-85. PubMed ID: 23567832 [TBL] [Abstract][Full Text] [Related]
37. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Gácsi M; Antal O; Vasas G; Máthé C; Borbély G; Saker ML; Gyori J; Farkas A; Vehovszky A; Bánfalvi G Toxicol In Vitro; 2009 Jun; 23(4):710-8. PubMed ID: 19250963 [TBL] [Abstract][Full Text] [Related]
38. Cylindrospermopsin degradation in sediments--the role of temperature, redox conditions, and dissolved organic carbon. Klitzke S; Fastner J Water Res; 2012 Apr; 46(5):1549-55. PubMed ID: 22204940 [TBL] [Abstract][Full Text] [Related]
39. Protection against the toxicity of microcystin-LR and cylindrospermopsin in Artemia salina and Daphnia spp. by pre-treatment with cyanobacterial lipopolysaccharide (LPS). Lindsay J; Metcalf JS; Codd GA Toxicon; 2006 Dec; 48(8):995-1001. PubMed ID: 16982077 [TBL] [Abstract][Full Text] [Related]
40. Decomposition of microcystin-LR, microcystin-RR, and microcystin-YR in water samples submitted to in vitro dissolution tests. Moreno IM; Maraver J; Aguete EC; Leao M; Gago-Martínez A; Cameán AM J Agric Food Chem; 2004 Sep; 52(19):5933-8. PubMed ID: 15366845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]