These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20345155)

  • 1. A model of anomalous enzyme-catalyzed gel degradation kinetics.
    Chatterjee D; Cherayil BJ
    J Phys Chem B; 2010 Apr; 114(15):5190-5. PubMed ID: 20345155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous fluctuations in sliding motion of cytoskeletal filaments driven by molecular motors: model simulations.
    Imafuku Y; Mitarai N; Tawada K; Nakanishi H
    J Phys Chem B; 2008 Feb; 112(5):1487-93. PubMed ID: 18189378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilized particles in gel matrix-type porous media. Homogeneous porous media model.
    Mota M; Teixeira JA; Yelshin A
    Biotechnol Prog; 2001; 17(5):860-5. PubMed ID: 11587575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous reaction-diffusion as a model of nonexponential DNA escape kinetics.
    Chatterjee D; Cherayil BJ
    J Chem Phys; 2010 Jan; 132(2):025103. PubMed ID: 20095716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism.
    Mock WL; Stanford DJ
    Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-catalyzed gel proteolysis: an anomalous diffusion-controlled mechanism.
    Fadda GC; Lairez D; Arrio B; Carton JP; Larreta-Garde V
    Biophys J; 2003 Nov; 85(5):2808-17. PubMed ID: 14581186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica through the eyes of colloidal models--when glass is a gel.
    Saika-Voivod I; King HM; Tartaglia P; Sciortino F; Zaccarelli E
    J Phys Condens Matter; 2011 Jul; 23(28):285101. PubMed ID: 21659694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling and continuum percolation model for enzyme-catalyzed gel degradation.
    Lairez D; Carton JP; Zalczer G; Pelta J
    Phys Rev Lett; 2007 Jun; 98(22):228302. PubMed ID: 17677883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the gel electrophoresis of short duplex DNA by Brownian dynamics: cubic gel lattice with direct interaction.
    Allison SA; Li Z; Reed D; Stellwagen NC
    Electrophoresis; 2002 Aug; 23(16):2678-89. PubMed ID: 12210172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the "door-corridor" model of gel electrophoresis. III. The gel constant and resistance, and the net charge, friction, diffusion and electrokinetic force of the migrating molecules.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):149-59. PubMed ID: 7612696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.
    da Silva MA; Arêas EP
    J Colloid Interface Sci; 2005 Sep; 289(2):394-401. PubMed ID: 15935361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of diffusion-limited catalytically activated reactions: an extension of the Wilemski-Fixman approach.
    Bénichou O; Coppey M; Moreau M; Oshanin G
    J Chem Phys; 2005 Nov; 123(19):194506. PubMed ID: 16321099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamics simulation of the diffusion of rods and wormlike chains in a gel modeled as a cubic lattice: application to DNA.
    Pei H; Allison S; Haynes BM; Augustin D
    J Phys Chem B; 2009 Mar; 113(9):2564-71. PubMed ID: 18761431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of kinetic and dynamical models of DNA-protein interaction and facilitated diffusion.
    Florescu AM; Joyeux M
    J Phys Chem A; 2010 Sep; 114(36):9662-72. PubMed ID: 20394450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore diffusion model for a two-substrate enzymatic reaction: application to galactose oxidase immobilized on porous glass particles.
    Dahodwala SK; Humphrey AE
    Biotechnol Bioeng; 1976 Jul; 18(7):987-1000. PubMed ID: 953165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of barrierless and activated chemical reactions in a dispersive medium within the fractional diffusion equation approach.
    Seki K; Bagchi B; Tachiya M
    J Phys Chem B; 2008 May; 112(19):6107-13. PubMed ID: 18179196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locking an oxidation-sensitive dynamic peptide system in the gel state.
    Sadownik JW; Ulijn RV
    Chem Commun (Camb); 2010 May; 46(20):3481-3. PubMed ID: 20582348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.