These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20345807)

  • 1. Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth.
    Sivasundar A; Palumbi SR
    J Evol Biol; 2010 Jun; 23(6):1159-69. PubMed ID: 20345807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier).
    Hyde JR; Vetter RD
    Mol Phylogenet Evol; 2007 Aug; 44(2):790-811. PubMed ID: 17320419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular basis of adaptive evolution of squirrelfish rhodopsins.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2004 Nov; 21(11):2071-8. PubMed ID: 15269277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation.
    Sugawara T; Imai H; Nikaido M; Imamoto Y; Okada N
    Mol Biol Evol; 2010 Mar; 27(3):506-19. PubMed ID: 19858068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation?
    Larmuseau MH; Huyse T; Vancampenhout K; Van Houdt JK; Volckaert FA
    Mol Phylogenet Evol; 2010 May; 55(2):689-98. PubMed ID: 19822217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory receptor related to class A, type 2 (V1r-like Ora2) genes are conserved between distantly related rockfishes (genus Sebastes).
    Johansson ML; Banks MA
    J Hered; 2011; 102(1):113-7. PubMed ID: 20881030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process.
    Hyde JR; Kimbrell CA; Budrick JE; Lynn EA; Vetter RD
    Mol Ecol; 2008 Feb; 17(4):1122-36. PubMed ID: 18261052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of the cottoid fish endemic to Lake Baikal deduced from nuclear DNA evidence.
    Hunt DM; Fitzgibbon J; Slobodyanyuk SJ; Bowmaker JK; Dulai KS
    Mol Phylogenet Evol; 1997 Dec; 8(3):415-22. PubMed ID: 9417898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.
    Van Nynatten A; Bloom D; Chang BS; Lovejoy NR
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26224386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a mitochondrial cytochrome b gene sequence in the species-rich genus sebastes (Teleostei, Scorpaenidae) and its utility in testing the monophyly of the subgenus Sebastomus.
    Rocha-Olivares A; Kimbrell CA; Eitner BJ; Vetter RD
    Mol Phylogenet Evol; 1999 Apr; 11(3):426-40. PubMed ID: 10196083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structural influences in rhodopsin evolution.
    Marsh L; Griffiths CS
    Mol Biol Evol; 2005 Apr; 22(4):894-904. PubMed ID: 15647521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift.
    Yokoyama R; Knox BE; Yokoyama S
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):939-45. PubMed ID: 7706043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Transcriptomics Reveals Patterns of Adaptive Evolution Associated with Depth and Age Within Marine Rockfishes (Sebastes).
    Heras J; Aguilar A
    J Hered; 2019 May; 110(3):340-350. PubMed ID: 30602025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes.
    Van Nynatten A; Janzen FH; Brochu K; Maldonado-Ocampo JA; Crampton WGR; Chang BSW; Lovejoy NR
    Proc Biol Sci; 2019 Jul; 286(1906):20191182. PubMed ID: 31288710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular support for marine sculpin (Cottidae; Oligocottinae) diversification during the transition from the subtidal to intertidal habitat in the Northeastern Pacific Ocean.
    Ramon ML; Knope ML
    Mol Phylogenet Evol; 2008 Feb; 46(2):475-83. PubMed ID: 18248743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demographic history, geographical distribution and reproductive isolation of distinct lineages of blue rockfish (Sebastes mystinus), a marine fish with a high dispersal potential.
    Burford MO
    J Evol Biol; 2009 Jul; 22(7):1471-86. PubMed ID: 19467131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.