BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20345906)

  • 1. Tetracysteine-tagged prion protein allows discrimination between the native and converted forms.
    Gaspersic J; Hafner-Bratkovic I; Stephan M; Veranic P; Bencina M; Vorberg I; Jerala R
    FEBS J; 2010 May; 277(9):2038-50. PubMed ID: 20345906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence.
    Coleman BM; Nisbet RM; Han S; Cappai R; Hatters DM; Hill AF
    Biochem Biophys Res Commun; 2009 Mar; 380(3):564-8. PubMed ID: 19285001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion protein NMR structure from tammar wallaby (Macropus eugenii) shows that the beta2-alpha2 loop is modulated by long-range sequence effects.
    Christen B; Hornemann S; Damberger FF; Wüthrich K
    J Mol Biol; 2009 Jun; 389(5):833-45. PubMed ID: 19393664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates.
    Wildegger G; Liemann S; Glockshuber R
    Nat Struct Biol; 1999 Jun; 6(6):550-3. PubMed ID: 10360358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments.
    Ronga L; Langella E; Palladino P; Marasco D; Tizzano B; Saviano M; Pedone C; Improta R; Ruvo M
    Proteins; 2007 Feb; 66(3):707-15. PubMed ID: 17152078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a spontaneously aggregating amyloid-forming variant of human PrP((90-231)) through phage-display screening of variants randomized between residues 101 and 112.
    Verma A; Sharma S; Ganguly NK; Majumdar S; Guptasarma P; Luthra-Guptasarma M
    Int J Biochem Cell Biol; 2008; 40(4):663-76. PubMed ID: 18023239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy.
    Liu A; Riek R; Zahn R; Hornemann S; Glockshuber R; Wüthrich K
    Biopolymers; 1999; 51(2):145-52. PubMed ID: 10397798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein.
    Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S
    Biophys J; 2001 Jul; 81(1):516-25. PubMed ID: 11423433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent.
    Nandi PK; Nicole JC
    J Mol Biol; 2004 Nov; 344(3):827-37. PubMed ID: 15533448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.
    El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J
    FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations.
    Kaimann T; Metzger S; Kuhlmann K; Brandt B; Birkmann E; Höltje HD; Riesner D
    J Mol Biol; 2008 Feb; 376(2):582-96. PubMed ID: 18158160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between the prion protein and its homolog Doppel: a partially structured state with implications for scrapie formation.
    Nicholson EM; Mo H; Prusiner SB; Cohen FE; Marqusee S
    J Mol Biol; 2002 Feb; 316(3):807-15. PubMed ID: 11866533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions.
    Lührs T; Zahn R; Wüthrich K
    J Mol Biol; 2006 Mar; 357(3):833-41. PubMed ID: 16466741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the 132-160 region in prion protein conformational transitions.
    Torrent J; Alvarez-Martinez MT; Liautard JP; Balny C; Lange R
    Protein Sci; 2005 Apr; 14(4):956-67. PubMed ID: 15772306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc).
    Bocharova OV; Breydo L; Parfenov AS; Salnikov VV; Baskakov IV
    J Mol Biol; 2005 Feb; 346(2):645-59. PubMed ID: 15670611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of recombinant prions with compounds of therapeutical significance.
    Georgieva D; Schwark D; von Bergen M; Redecke L; Genov N; Betzel C
    Biochem Biophys Res Commun; 2006 Jun; 344(2):463-70. PubMed ID: 16630566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy to characterize the molecular size of prion protein.
    Kunze S; Lemke K; Metze J; Bloukas G; Kotta K; Panagiotidis CH; Sklaviadis T; Bodemer W
    J Microsc; 2008 May; 230(Pt 2):224-32. PubMed ID: 18445151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.