These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20346352)
1. High-fat intake induced by mu-opioid activation of the nucleus accumbens is inhibited by Y1R-blockade and MC3/4R- stimulation. Zheng H; Townsend RL; Shin AC; Patterson LM; Phifer CB; Berthoud HR Brain Res; 2010 Sep; 1350():131-8. PubMed ID: 20346352 [TBL] [Abstract][Full Text] [Related]
2. CB1 receptors modulate the intake of a sweetened-fat diet in response to μ-opioid receptor stimulation of the nucleus accumbens. Skelly MJ; Guy EG; Howlett AC; Pratt WE Pharmacol Biochem Behav; 2010 Nov; 97(1):144-51. PubMed ID: 20562021 [TBL] [Abstract][Full Text] [Related]
4. Excitatory amino acid receptor subtype agonists induce feeding in the nucleus accumbens shell in rats: opioid antagonist actions and interactions with mu-opioid agonists. Echo JA; Lamonte N; Christian G; Znamensky V; Ackerman TF; Bodnar RJ Brain Res; 2001 Dec; 921(1-2):86-97. PubMed ID: 11720714 [TBL] [Abstract][Full Text] [Related]
5. The role of nucleus accumbens adenosine-opioid interaction in mediating palatable food intake. Pritchett CE; Pardee AL; McGuirk SR; Will MJ Brain Res; 2010 Jan; 1306():85-92. PubMed ID: 19822132 [TBL] [Abstract][Full Text] [Related]
6. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration. Parker KE; Johns HW; Floros TG; Will MJ Behav Brain Res; 2014 Mar; 260():131-8. PubMed ID: 24257074 [TBL] [Abstract][Full Text] [Related]
7. gamma-Aminobutyric acid receptor subtype antagonists differentially alter opioid-induced feeding in the shell region of the nucleus accumbens in rats. Znamensky V; Echo JA; Lamonte N; Christian G; Ragnauth A; Bodnar RJ Brain Res; 2001 Jul; 906(1-2):84-91. PubMed ID: 11430864 [TBL] [Abstract][Full Text] [Related]
8. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. MacDonald AF; Billington CJ; Levine AS Brain Res; 2004 Aug; 1018(1):78-85. PubMed ID: 15262208 [TBL] [Abstract][Full Text] [Related]
9. Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. Mena JD; Selleck RA; Baldo BA J Neurosci; 2013 Nov; 33(47):18540-52. PubMed ID: 24259576 [TBL] [Abstract][Full Text] [Related]
10. Amylin receptor signaling in the nucleus accumbens negatively modulates μ-opioid-driven feeding. Baisley SK; Baldo BA Neuropsychopharmacology; 2014 Dec; 39(13):3009-17. PubMed ID: 24957819 [TBL] [Abstract][Full Text] [Related]
11. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity. van den Heuvel JK; Furman K; Gumbs MC; Eggels L; Opland DM; Land BB; Kolk SM; Narayanan NS; Fliers E; Kalsbeek A; DiLeone RJ; la Fleur SE Biol Psychiatry; 2015 Apr; 77(7):633-41. PubMed ID: 25109664 [TBL] [Abstract][Full Text] [Related]
12. Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum. Will MJ; Pratt WE; Kelley AE Physiol Behav; 2006 Sep; 89(2):226-34. PubMed ID: 16854442 [TBL] [Abstract][Full Text] [Related]
13. Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Ruegsegger GN; Brown JD; Kovarik MC; Miller DK; Booth FW Neuroscience; 2016 Dec; 339():525-537. PubMed ID: 27743985 [TBL] [Abstract][Full Text] [Related]
14. Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. Will MJ; Franzblau EB; Kelley AE J Neurosci; 2003 Apr; 23(7):2882-8. PubMed ID: 12684475 [TBL] [Abstract][Full Text] [Related]
15. A bi-directional mu-opioid-opioid connection between the nucleus of the accumbens shell and the central nucleus of the amygdala in the rat. Kim EM; Quinn JG; Levine AS; O'Hare E Brain Res; 2004 Dec; 1029(1):135-9. PubMed ID: 15533326 [TBL] [Abstract][Full Text] [Related]
16. Effects of co-administration of 2-arachidonylglycerol (2-AG) and a selective µ-opioid receptor agonist into the nucleus accumbens on high-fat feeding behaviors in the rat. Parker KE; McCall JG; McGuirk SR; Trivedi S; Miller DK; Will MJ Brain Res; 2015 Aug; 1618():309-15. PubMed ID: 26100333 [TBL] [Abstract][Full Text] [Related]
17. Modulation of feeding and locomotion through mu and delta opioid receptor signaling in the nucleus accumbens. Katsuura Y; Taha SA Neuropeptides; 2010 Jun; 44(3):225-32. PubMed ID: 20044138 [TBL] [Abstract][Full Text] [Related]
18. Voluntary wheel running effects on intra-accumbens opioid high-fat feeding and locomotor behavior in Sprague-Dawley and Wistar rat strains. Lee JR; Parker KE; Tapia M; Johns HW; Floros TG; Roberts MD; Booth FW; Will MJ Physiol Behav; 2019 Jul; 206():67-75. PubMed ID: 30807769 [TBL] [Abstract][Full Text] [Related]
19. Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Ragnauth A; Moroz M; Bodnar RJ Brain Res; 2000 Sep; 876(1-2):76-87. PubMed ID: 10973595 [TBL] [Abstract][Full Text] [Related]
20. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]