These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20346567)
1. The optimal phasic relationship between synchronized shock and mechanical chest compressions. Li Y; Yu T; Ristagno G; Chung SP; Bisera J; Quan W; Freeman G; Weil MH; Tang W Resuscitation; 2010 Jun; 81(6):724-9. PubMed ID: 20346567 [TBL] [Abstract][Full Text] [Related]
2. Defibrillation delivered during the upstroke phase of manual chest compression improves shock success. Li Y; Wang H; Cho JH; Quan W; Freeman G; Bisera J; Weil MH; Tang W Crit Care Med; 2010 Mar; 38(3):910-5. PubMed ID: 20042857 [TBL] [Abstract][Full Text] [Related]
3. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation. Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916 [TBL] [Abstract][Full Text] [Related]
4. Initial defibrillation versus initial chest compression in a 4-minute ventricular fibrillation canine model of cardiac arrest. Wang YL; Zhong JQ; Tao W; Hou XM; Meng XL; Zhang Y Crit Care Med; 2009 Jul; 37(7):2250-2. PubMed ID: 19455026 [TBL] [Abstract][Full Text] [Related]
6. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Kolarova J; Ayoub IM; Yi Z; Gazmuri RJ Crit Care Med; 2003 Jul; 31(7):2022-8. PubMed ID: 12847399 [TBL] [Abstract][Full Text] [Related]
7. Minimizing pre- and post-defibrillation pauses increases the likelihood of return of spontaneous circulation (ROSC). Sell RE; Sarno R; Lawrence B; Castillo EM; Fisher R; Brainard C; Dunford JV; Davis DP Resuscitation; 2010 Jul; 81(7):822-5. PubMed ID: 20398991 [TBL] [Abstract][Full Text] [Related]
8. Comparison of efficacy of pulsed biphasic waveform and rectilinear biphasic waveform in a short ventricular fibrillation pig model. Li Y; Wang H; Cho JH; Didon JP; Bisera J; Weil MH; Tang W Resuscitation; 2009 Sep; 80(9):1047-51. PubMed ID: 19604618 [TBL] [Abstract][Full Text] [Related]
9. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model. Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037 [TBL] [Abstract][Full Text] [Related]
10. A comparison of defibrillation efficacy between different impedance compensation techniques in high impedance porcine model. Li Y; Ristagno G; Yu T; Bisera J; Weil MH; Tang W Resuscitation; 2009 Nov; 80(11):1312-7. PubMed ID: 19720442 [TBL] [Abstract][Full Text] [Related]
11. A comparison of 2 types of chest compressions in a porcine model of cardiac arrest. Wu JY; Li CS; Liu ZX; Wu CJ; Zhang GC Am J Emerg Med; 2009 Sep; 27(7):823-9. PubMed ID: 19683111 [TBL] [Abstract][Full Text] [Related]
12. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457 [TBL] [Abstract][Full Text] [Related]
13. The quality of chest compressions during cardiopulmonary resuscitation overrides importance of timing of defibrillation. Ristagno G; Tang W; Chang YT; Jorgenson DB; Russell JK; Huang L; Wang T; Sun S; Weil MH Chest; 2007 Jul; 132(1):70-5. PubMed ID: 17550931 [TBL] [Abstract][Full Text] [Related]
14. Defibrillation success during different phases of the mechanical chest compression cycle. Steinberg MT; Olsen JA; Brunborg C; Persse D; Sterz F; Lozano M; Westfall M; Travis DT; Lerner EB; Wik L Resuscitation; 2016 Jun; 103():99-105. PubMed ID: 26875991 [TBL] [Abstract][Full Text] [Related]
15. Current is better than energy as predictor of success for biphasic defibrillatory shocks in a porcine model of ventricular fibrillation. Ristagno G; Yu T; Quan W; Freeman G; Li Y Resuscitation; 2013 May; 84(5):678-83. PubMed ID: 23032689 [TBL] [Abstract][Full Text] [Related]
16. Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation. Li Y; Ristagno G; Bisera J; Tang W; Deng Q; Weil MH Crit Care Med; 2008 Jan; 36(1):211-5. PubMed ID: 18090357 [TBL] [Abstract][Full Text] [Related]
17. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Rubertsson S; Karlsten R Resuscitation; 2005 Jun; 65(3):357-63. PubMed ID: 15919574 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of transesophageal defibrillation in ventricular fibrillation of long duration. Mischke K; Schimpf T; Knackstedt C; Eickholt C; Hanrath P; Kelm M; Schauerte P Am J Emerg Med; 2008 Mar; 26(3):287-90. PubMed ID: 18358938 [TBL] [Abstract][Full Text] [Related]
19. A focused investigation of expedited, stack of three shocks versus chest compressions first followed by single shocks for monitored ventricular fibrillation/ventricular tachycardia cardiopulmonary arrest in an in-hospital setting. Davis D; Aguilar SA; Sell R; Minokadeh A; Husa R J Hosp Med; 2016 Apr; 11(4):264-8. PubMed ID: 26510012 [TBL] [Abstract][Full Text] [Related]
20. Comparison of defibrillation efficacy between two pads placements in a pediatric porcine model of cardiac arrest. Ristagno G; Yu T; Quan W; Freeman G; Li Y Resuscitation; 2012 Jun; 83(6):755-9. PubMed ID: 22198420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]