These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20346672)

  • 1. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation.
    Ingram JN; Howard IS; Flanagan JR; Wolpert DM
    Curr Biol; 2010 Apr; 20(7):618-23. PubMed ID: 20346672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.
    Ingram JN; Howard IS; Flanagan JR; Wolpert DM
    PLoS Comput Biol; 2011 Sep; 7(9):e1002196. PubMed ID: 21980277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual cues signaling object grasp reduce interference in motor learning.
    Cothros N; Wong J; Gribble PL
    J Neurophysiol; 2009 Oct; 102(4):2112-20. PubMed ID: 19657075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous coordinate representations are influenced by visual feedback in a motor learning task.
    Parmar PN; Huang FC; Patton JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6762-8. PubMed ID: 22255891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of grasp stability during pronation and supination movements.
    Johansson RS; Backlin JL; Burstedt MK
    Exp Brain Res; 1999 Sep; 128(1-2):20-30. PubMed ID: 10473736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned.
    Marneweck M; Knelange E; Lee-Miller T; Santello M; Gordon AM
    PLoS One; 2015; 10(9):e0138258. PubMed ID: 26376089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning.
    Franklin DW; Batchelor AV; Wolpert DM
    eNeuro; 2016; 3(4):. PubMed ID: 27588304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human reach-to-grasp compensation with object pose uncertainty.
    Fu Q; Ushani A; Jentoft L; Howe RD; Santella M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6893-6. PubMed ID: 24111329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands.
    Cotugno G; Konstantinova J; Althoefer K; Nanayakkara T
    PLoS One; 2018; 13(12):e0208228. PubMed ID: 30586407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial representation of predictive motor learning.
    Witney AG; Wolpert DM
    J Neurophysiol; 2003 Apr; 89(4):1837-43. PubMed ID: 12686568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force feedback facilitates multisensory integration during robotic tool use.
    Sengül A; Rognini G; van Elk M; Aspell JE; Bleuler H; Blanke O
    Exp Brain Res; 2013 Jun; 227(4):497-507. PubMed ID: 23625046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation.
    Lukos JR; Choi JY; Santello M
    J Neurophysiol; 2013 Jun; 109(12):2937-46. PubMed ID: 23554435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and evaluation of human motor skills in a virtual tennis task.
    Tanaka Y; Ishii M; Tsuji T; Imamura N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4190-3. PubMed ID: 19163636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The continuous updating of grasp in response to dynamic changes in object size, hand size and distractor proximity.
    Karok S; Newport R
    Neuropsychologia; 2010 Nov; 48(13):3891-900. PubMed ID: 20933527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.