These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20346949)

  • 1. Interacting effect of thermoperiod and photoperiod on the eclosion rhythm in the onion fly, Delia antiqua supports the two-oscillator model.
    Watari Y; Tanaka K
    J Insect Physiol; 2010 Sep; 56(9):1192-7. PubMed ID: 20346949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity.
    Watari Y
    J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly.
    Miyazaki Y; Watari Y; Tanaka K; Goto SG
    J Insect Physiol; 2016 Mar; 86():54-9. PubMed ID: 26776097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the effect of thermoperiod.
    Watari Y
    J Insect Physiol; 2002 Sep; 48(9):881-886. PubMed ID: 12770050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult eclosion timing of the onion fly, Delia antiqua, in response to daily cycles of temperature at different soil depths.
    Tanaka K; Watari Y
    Naturwissenschaften; 2003 Feb; 90(2):76-9. PubMed ID: 12590302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The onion fly modulates the adult eclosion time in response to amplitude of temperature cycle.
    Tanaka K; Watari Y
    Naturwissenschaften; 2011 Aug; 98(8):711-5. PubMed ID: 21710241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua.
    Watari Y
    J Insect Physiol; 2002 Jan; 48(1):83-89. PubMed ID: 12770135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae.
    Joshi DS; Gore AP
    Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Day-to-day variations in the amplitude of the soil temperature cycle and impact on adult eclosion timing of the onion fly.
    Tanaka K; Watari Y
    Int J Biometeorol; 2017 Jun; 61(6):1011-1016. PubMed ID: 27921173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms.
    López-Olmeda JF; Madrid JA; Sánchez-Vázquez FJ
    Chronobiol Int; 2006; 23(3):537-50. PubMed ID: 16753940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.
    López-Olmeda JF; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly, Sarcophaga crassipalpis.
    Short CA; Meuti ME; Zhang Q; Denlinger DL
    J Insect Physiol; 2016; 93-94():28-35. PubMed ID: 27530303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae.
    Khare PV; Keny VL; Vanlalnghaka C; Satralkar MK; Kasture MS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2004 May; 21(3):353-65. PubMed ID: 15332442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.
    Lankinen P; Forsman P
    J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the photocycle and thermocycle on rhythms of plasma thyroxine and plasma and ocular melatonin in late metamorphic stages of the bullfrog tadpole, Rana catesbeiana.
    Wright ML; Bruni NK
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Sep; 139(1):33-40. PubMed ID: 15471678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circannual phase response curves to short and long photoperiod in the European hamster.
    Monecke S; Saboureau M; Malan A; Bonn D; Masson-Pévet M; Pévet P
    J Biol Rhythms; 2009 Oct; 24(5):413-26. PubMed ID: 19755586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of prolonged acclimation to intermediate photoperiod and photo-schedule reversal in photosensitive golden hamsters.
    Jefimow M; Wojciechowski MS; Tegowska E
    J Exp Zool A Comp Exp Biol; 2005 Nov; 303(11):987-97. PubMed ID: 16217806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment of circadian rhythm by ambient temperature cycles in mice.
    Refinetti R
    J Biol Rhythms; 2010 Aug; 25(4):247-56. PubMed ID: 20679494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.