BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20347426)

  • 1. Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase.
    Klapacz J; Lingaraju GM; Guo HH; Shah D; Moar-Shoshani A; Loeb LA; Samson LD
    Mol Cell; 2010 Mar; 37(6):843-53. PubMed ID: 20347426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of glycosylase induced genomic instability.
    Eyler DE; Burnham KA; Wilson TE; O'Brien PJ
    PLoS One; 2017; 12(3):e0174041. PubMed ID: 28333944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-mediated hyperbranched amplification for sensitive detection of human alkyladenine DNA glycosylase from HeLa cells.
    Wang L; Zhang H; Xie Y; Chen H; Ren C; Chen X
    Talanta; 2019 Mar; 194():846-851. PubMed ID: 30609614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate binding pocket residues of human alkyladenine-DNA glycosylase critical for methylating agent survival.
    Chen CY; Guo HH; Shah D; Blank A; Samson LD; Loeb LA
    DNA Repair (Amst); 2008 Oct; 7(10):1731-45. PubMed ID: 18706524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abasic sites linked to dUTP incorporation in DNA are a major cause of spontaneous mutations in absence of base excision repair and Rad17-Mec3-Ddc1 (9-1-1) DNA damage checkpoint clamp in Saccharomyces cerevisiae.
    Collura A; Kemp PA; Boiteux S
    DNA Repair (Amst); 2012 Mar; 11(3):294-303. PubMed ID: 22226374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay.
    Muruzabal D; Sanz-Serrano J; Sauvaigo S; Gützkow KB; López de Cerain A; Vettorazzi A; Azqueta A
    Toxicol Lett; 2020 May; 330():108-117. PubMed ID: 32380118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Rereplication Is Susceptible to Nucleotide-Level Mutagenesis.
    Bui DT; Li JJ
    Genetics; 2019 Jun; 212(2):445-460. PubMed ID: 31028114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells.
    Wang LJ; Luo ML; Yang XY; Li XF; Wu Y; Zhang CY
    Theranostics; 2019; 9(15):4450-4460. PubMed ID: 31285772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3'->5' exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae.
    Ishchenko AA; Yang X; Ramotar D; Saparbaev M
    Mol Cell Biol; 2005 Aug; 25(15):6380-90. PubMed ID: 16024777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.
    Phadnis N; Mehta R; Meednu N; Sia EA
    DNA Repair (Amst); 2006 Jul; 5(7):829-39. PubMed ID: 16730479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase.
    Hendershot JM; Wolfe AE; O'Brien PJ
    Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases.
    Xiao W; Chow BL; Hanna M; Doetsch PW
    Mutat Res; 2001 Dec; 487(3-4):137-47. PubMed ID: 11738940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for DNA lesions: structural evidence for lower- and higher-affinity DNA binding conformations of human alkyladenine DNA glycosylase.
    Setser JW; Lingaraju GM; Davis CA; Samson LD; Drennan CL
    Biochemistry; 2012 Jan; 51(1):382-90. PubMed ID: 22148158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of MLH2/hPMS1 dominant mutations that prevent DNA mismatch repair function.
    Reyes GX; Zhao B; Schmidt TT; Gries K; Kloor M; Hombauer H
    Commun Biol; 2020 Dec; 3(1):751. PubMed ID: 33303966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human base excision repair creates a bias toward -1 frameshift mutations.
    Lyons DM; O'Brien PJ
    J Biol Chem; 2010 Aug; 285(33):25203-12. PubMed ID: 20547483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
    Hedglin M; O'Brien PJ
    Biochemistry; 2008 Nov; 47(44):11434-45. PubMed ID: 18839966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Jung H; Lee MH; Koag MC; Lee S
    Biochem J; 2020 May; 477(9):1601-1612. PubMed ID: 32297632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mutant MUTYH proteins associated with familial colorectal cancer.
    Ali M; Kim H; Cleary S; Cupples C; Gallinger S; Bristow R
    Gastroenterology; 2008 Aug; 135(2):499-507. PubMed ID: 18534194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae.
    Nishant KT; Plys AJ; Alani E
    Genetics; 2008 Jun; 179(2):747-55. PubMed ID: 18505871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.