BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20347727)

  • 1. Investigation of structure-activity relationships in organophosphates-cholinesterase interaction using docking analysis.
    Moralev SN; Tikhonov DB
    Chem Biol Interact; 2010 Sep; 187(1-3):153-6. PubMed ID: 20347727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of interactions of cholinesterases with tight binding inhibitors.
    Radić Z; Manetsch R; Krasiński A; Raushel J; Yamauchi J; Garcia C; Kolb H; Sharpless KB; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():133-41. PubMed ID: 16289416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation.
    Carletti E; Li H; Li B; Ekström F; Nicolet Y; Loiodice M; Gillon E; Froment MT; Lockridge O; Schopfer LM; Masson P; Nachon F
    J Am Chem Soc; 2008 Nov; 130(47):16011-20. PubMed ID: 18975951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters.
    Masson P; Nachon F; Broomfield CA; Lenz DE; Verdier L; Schopfer LM; Lockridge O
    Chem Biol Interact; 2008 Sep; 175(1-3):273-80. PubMed ID: 18508040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tryptophan in the bottleneck of the catalytic gorge of an invertebrate acetylcholinesterase confers relative resistance to carbamate and organophosphate inhibitors.
    Patel R; Sanders R; Brown L; Baker S; Tsigelny I; Pezzementi L
    Cell Biochem Biophys; 2006; 46(3):253-64. PubMed ID: 17272851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun.
    Carletti E; Aurbek N; Gillon E; Loiodice M; Nicolet Y; Fontecilla-Camps JC; Masson P; Thiermann H; Nachon F; Worek F
    Biochem J; 2009 Jun; 421(1):97-106. PubMed ID: 19368529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural approach to the aging of phosphylated cholinesterases.
    Masson P; Nachon F; Lockridge O
    Chem Biol Interact; 2010 Sep; 187(1-3):157-62. PubMed ID: 20338153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative analysis of sensitivity of proteases (chymotrypsin and trypsin) and cholinesterases of different origin to some organophosphorus inhibitors].
    Rozengart EV
    Zh Evol Biokhim Fiziol; 2009; 45(3):277-83. PubMed ID: 19569552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues.
    Bolognesi ML; Bartolini M; Cavalli A; Andrisano V; Rosini M; Minarini A; Melchiorre C
    J Med Chem; 2004 Nov; 47(24):5945-52. PubMed ID: 15537349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases.
    Saxena A; Qian N; Kovach IM; Kozikowski AP; Pang YP; Vellom DC; Radić Z; Quinn D; Taylor P; Doctor BP
    Protein Sci; 1994 Oct; 3(10):1770-8. PubMed ID: 7849595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Acyl pocket of the active center in cholinesterases and dialkyl phosphates: a study of their interaction by statistical methods].
    Moralev SN
    Zh Evol Biokhim Fiziol; 2001; 37(2):92-100. PubMed ID: 11452790
    [No Abstract]   [Full Text] [Related]  

  • 12. Interactions of butane, but-2-ene or xylene-like linked bispyridinium para-aldoximes with native and tabun-inhibited human cholinesterases.
    Calić M; Bosak A; Kuca K; Kovarik Z
    Chem Biol Interact; 2008 Sep; 175(1-3):305-8. PubMed ID: 18501885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of cholinesterases in ecotoxicology.
    Nunes B
    Rev Environ Contam Toxicol; 2011; 212():29-59. PubMed ID: 21432054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of cycloSal-pronucleotides with cholinesterases from different origins. A structure-activity relationship.
    Meier C; Ducho C; Görbig U; Esnouf R; Balzarini J
    J Med Chem; 2004 May; 47(11):2839-52. PubMed ID: 15139762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Propionylcholinesterases from the brain of Mollusca Interaction with substrates and inhibitors].
    Grigor'eva GM
    Biokhimiia; 1980 Dec; 45(12):2176-88. PubMed ID: 7248352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?
    Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F
    Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L; Shi A; He F; Li X
    Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects.
    Khan MT
    N Biotechnol; 2009 Jun; 25(5):331-46. PubMed ID: 19491049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.
    Kia Y; Osman H; Suresh Kumar R; Basiri A; Murugaiyah V
    Bioorg Med Chem Lett; 2014 Apr; 24(7):1815-9. PubMed ID: 24594354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.