BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20347970)

  • 1. Diverse modes of Drosophila tracheal fusion cell transcriptional regulation.
    Jiang L; Pearson JC; Crews ST
    Mech Dev; 2010; 127(5-6):265-80. PubMed ID: 20347970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional specificity of Drosophila dysfusion and the control of tracheal fusion cell gene expression.
    Jiang L; Crews ST
    J Biol Chem; 2007 Sep; 282(39):28659-28668. PubMed ID: 17652079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.
    Zhan Y; Maung SW; Shao B; Myat MM
    PLoS One; 2010 Nov; 5(11):e14134. PubMed ID: 21152432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea.
    Myat MM; Lightfoot H; Wang P; Andrew DJ
    Dev Biol; 2005 May; 281(1):38-52. PubMed ID: 15848387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein.
    Jiang L; Crews ST
    Mol Cell Biol; 2003 Aug; 23(16):5625-37. PubMed ID: 12897136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila Jing is part of the breathless fibroblast growth factor receptor positive feedback loop.
    Sonnenfeld M; Morozova T; Hackett J; Sun X
    Dev Genes Evol; 2010 Dec; 220(7-8):207-20. PubMed ID: 21061018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion.
    Jiang L; Crews ST
    Mol Cell Biol; 2006 Sep; 26(17):6547-56. PubMed ID: 16914738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor.
    Sonnenfeld MJ; Delvecchio C; Sun X
    Dev Genes Evol; 2005 May; 215(5):221-9. PubMed ID: 15818484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-minded, Dmef2, Pointed, and Su(H) act on identified regulatory sequences of the roughest gene in Drosophila melanogaster.
    Apitz H; Strünkelnberg M; de Couet HG; Fischbach KF
    Dev Genes Evol; 2005 Sep; 215(9):460-69. PubMed ID: 16096801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2.
    Cruz J; Bota-Rabassedas N; Franch-Marro X
    Sci Rep; 2015 Dec; 5():17806. PubMed ID: 26632449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the Drosophila POU domain transcription factor drifter as an upstream regulator of breathless receptor tyrosine kinase expression in developing trachea.
    Anderson MG; Certel SJ; Certel K; Lee T; Montell DJ; Johnson WA
    Development; 1996 Dec; 122(12):4169-78. PubMed ID: 9012536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway.
    Morozova T; Hackett J; Sedaghat Y; Sonnenfeld M
    Dev Genes Evol; 2010 Dec; 220(7-8):191-206. PubMed ID: 21061019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila.
    Llimargas M; Casanova J
    Development; 1997 Sep; 124(17):3273-81. PubMed ID: 9310322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in
    Webber JL; Zhang J; Massey A; Sanchez-Luege N; Rebay I
    Development; 2018 Jul; 145(13):. PubMed ID: 29848501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer.
    Pearson JC; Watson JD; Crews ST
    Dev Biol; 2012 Jun; 366(2):420-32. PubMed ID: 22537497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression.
    Pearson JC; Crews ST
    Dev Biol; 2014 Aug; 392(2):466-82. PubMed ID: 24854999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.
    Du L; Zhou A; Patel A; Rao M; Anderson K; Roy S
    Dev Biol; 2017 Jul; 427(1):35-48. PubMed ID: 28502613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct control of the proneural gene atonal by retinal determination factors during Drosophila eye development.
    Tanaka-Matakatsu M; Du W
    Dev Biol; 2008 Jan; 313(2):787-801. PubMed ID: 18083159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function.
    Miller SW; Rebeiz M; Atanasov JE; Posakony JW
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17194-9. PubMed ID: 25404315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification.
    Boisclair Lachance JF; Webber JL; Hong L; Dinner AR; Rebay I
    Genes Dev; 2018 Mar; 32(5-6):389-401. PubMed ID: 29535190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.