These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 20348214)
1. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Sønderby IE; Burow M; Rowe HC; Kliebenstein DJ; Halkier BA Plant Physiol; 2010 May; 153(1):348-63. PubMed ID: 20348214 [TBL] [Abstract][Full Text] [Related]
2. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Li Y; Sawada Y; Hirai A; Sato M; Kuwahara A; Yan X; Hirai MY Plant Cell Physiol; 2013 Aug; 54(8):1335-44. PubMed ID: 23792303 [TBL] [Abstract][Full Text] [Related]
3. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Engqvist M; Yatusevich R; Müller C; Flügge UI New Phytol; 2008; 177(3):627-642. PubMed ID: 18042203 [TBL] [Abstract][Full Text] [Related]
4. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. Sønderby IE; Hansen BG; Bjarnholt N; Ticconi C; Halkier BA; Kliebenstein DJ PLoS One; 2007 Dec; 2(12):e1322. PubMed ID: 18094747 [TBL] [Abstract][Full Text] [Related]
5. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412 [TBL] [Abstract][Full Text] [Related]
8. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Rollwitz I; Humphry M; Gershenzon J; Flügge UI Plant Cell; 2009 Jun; 21(6):1813-29. PubMed ID: 19542295 [TBL] [Abstract][Full Text] [Related]
9. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. Beekwilder J; van Leeuwen W; van Dam NM; Bertossi M; Grandi V; Mizzi L; Soloviev M; Szabados L; Molthoff JW; Schipper B; Verbocht H; de Vos RC; Morandini P; Aarts MG; Bovy A PLoS One; 2008 Apr; 3(4):e2068. PubMed ID: 18446225 [TBL] [Abstract][Full Text] [Related]
10. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. Coleto I; Bejarano I; Marín-Peña AJ; Medina J; Rioja C; Burow M; Marino D New Phytol; 2021 Jan; 229(2):1021-1035. PubMed ID: 32901916 [TBL] [Abstract][Full Text] [Related]
12. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. Burow M; Atwell S; Francisco M; Kerwin RE; Halkier BA; Kliebenstein DJ Mol Plant; 2015 Aug; 8(8):1201-12. PubMed ID: 25758208 [TBL] [Abstract][Full Text] [Related]
13. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053 [TBL] [Abstract][Full Text] [Related]
14. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. Mostafa I; Zhu N; Yoo MJ; Balmant KM; Misra BB; Dufresne C; Abou-Hashem M; Chen S; El-Domiaty M J Proteomics; 2016 Apr; 138():1-19. PubMed ID: 26915584 [TBL] [Abstract][Full Text] [Related]
15. The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors. Bulgakov VP; Veremeichik GN; Grigorchuk VP; Rybin VG; Shkryl YN Plant Physiol Biochem; 2016 May; 102():70-9. PubMed ID: 26913794 [TBL] [Abstract][Full Text] [Related]
16. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
18. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Yatusevich R; Mugford SG; Matthewman C; Gigolashvili T; Frerigmann H; Delaney S; Koprivova A; Flügge UI; Kopriva S Plant J; 2010 Apr; 62(1):1-11. PubMed ID: 20042022 [TBL] [Abstract][Full Text] [Related]
19. Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. Frerigmann H; Gigolashvili T Front Plant Sci; 2014; 5():626. PubMed ID: 25426131 [TBL] [Abstract][Full Text] [Related]
20. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]