BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20348224)

  • 1. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.
    Roseguini BT; Mehmet Soylu S; Whyte JJ; Yang HT; Newcomer S; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1991-2000. PubMed ID: 20348224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.
    Roseguini BT; Arce-Esquivel AA; Newcomer SC; Laughlin MH
    Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1658-68. PubMed ID: 21957157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.
    Sheldon RD; Roseguini BT; Thyfault JP; Crist BD; Laughlin MH; Newcomer SC
    J Appl Physiol (1985); 2012 Jun; 112(12):2099-109. PubMed ID: 22442025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.
    Roseguini BT; Arce-Esquivel AA; Newcomer SC; Yang HT; Terjung R; Laughlin MH
    J Appl Physiol (1985); 2012 May; 112(9):1556-63. PubMed ID: 22362398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular endothelial growth factor mRNA and protein do not change in parallel during non-inflammatory skeletal muscle ischaemia in rat.
    Milkiewicz M; Hudlicka O; Shiner R; Egginton S; Brown MD
    J Physiol; 2006 Dec; 577(Pt 2):671-8. PubMed ID: 16990404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle.
    Hellsten Y; Rufener N; Nielsen JJ; Høier B; Krustrup P; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R975-82. PubMed ID: 18094062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.
    Messere A; Ceravolo G; Franco W; Maffiodo D; Ferraresi C; Roatta S
    J Appl Physiol (1985); 2017 Dec; 123(6):1451-1460. PubMed ID: 28819006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia.
    Olfert IM; Breen EC; Mathieu-Costello O; Wagner PD
    J Appl Physiol (1985); 2001 Sep; 91(3):1176-84. PubMed ID: 11509513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.
    Tan X; Qi WN; Gu X; Urbaniak JR; Chen LE
    J Biomech; 2006; 39(13):2430-7. PubMed ID: 16225881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise.
    Rodriguez-Miguelez P; Lima-Cabello E; Martínez-Flórez S; Almar M; Cuevas MJ; González-Gallego J
    J Appl Physiol (1985); 2015 Apr; 118(8):1075-83. PubMed ID: 25749442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor.
    Yamada M; Kim S; Egashira K; Takeya M; Ikeda T; Mimura O; Iwao H
    Arterioscler Thromb Vasc Biol; 2003 Nov; 23(11):1996-2001. PubMed ID: 14500291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles.
    Hudlicka O; Milkiewicz M; Cotter MA; Brown MD
    Exp Physiol; 2002 May; 87(3):373-81. PubMed ID: 12089605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of different modes of pneumatic compression on muscle tissue oxygenation: An intraparticipant, randomised, controlled volunteer study.
    Nandwana SK; Ho KM
    Anaesth Intensive Care; 2019 Jan; 47(1):23-31. PubMed ID: 30864472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle.
    Roca J; Gavin TP; Jordan M; Siafakas N; Wagner H; Benoit H; Breen E; Wagner PD
    J Appl Physiol (1985); 1998 Sep; 85(3):1142-9. PubMed ID: 9729593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro.
    Xu Q; Wang S; Jiang X; Zhao Y; Gao M; Zhang Y; Wang X; Tano K; Kanehara M; Zhang W; Ishida T
    Clin Exp Pharmacol Physiol; 2007 Jul; 34(7):624-31. PubMed ID: 17581219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle.
    Gustafsson T; Puntschart A; Kaijser L; Jansson E; Sundberg CJ
    Am J Physiol; 1999 Feb; 276(2):H679-85. PubMed ID: 9950871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic hypoxia attenuates resting and exercise-induced VEGF, flt-1, and flk-1 mRNA levels in skeletal muscle.
    Olfert IM; Breen EC; Mathieu-Costello O; Wagner PD
    J Appl Physiol (1985); 2001 Apr; 90(4):1532-8. PubMed ID: 11247956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise.
    Ji JW; Mac Gabhann F; Popel AS
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3740-9. PubMed ID: 17890434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle.
    Esposito F; Mathieu-Costello O; Wagner PD; Richardson RS
    J Physiol; 2018 Nov; 596(21):5149-5161. PubMed ID: 30192995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia.
    Ryu J; Lee CW; Hong KH; Shin JA; Lim SH; Park CS; Shim J; Nam KB; Choi KJ; Kim YH; Han KH
    Cardiovasc Res; 2008 May; 78(2):333-40. PubMed ID: 18006432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.