These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20348442)

  • 61. Recent progress in miRNA biogenesis and decay.
    Bofill-De Ros X; Vang Ørom UA
    RNA Biol; 2024 Jan; 21(1):1-8. PubMed ID: 38031325
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New insights into pri-miRNA processing and accumulation in plants.
    Zhang S; Liu Y; Yu B
    Wiley Interdiscip Rev RNA; 2015; 6(5):533-45. PubMed ID: 26119101
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of miRNA and miRNA processing factors in development and disease.
    Conrad R; Barrier M; Ford LP
    Birth Defects Res C Embryo Today; 2006 Jun; 78(2):107-17. PubMed ID: 16847880
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In-depth analysis of Kaposi's sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery.
    Umbach JL; Cullen BR
    J Virol; 2010 Jan; 84(2):695-703. PubMed ID: 19889781
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation.
    Vohradsky J; Panek J; Vomastek T
    Nucleic Acids Res; 2010 Aug; 38(14):4579-85. PubMed ID: 20371515
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modulation of microRNA processing by p53.
    Suzuki HI; Yamagata K; Sugimoto K; Iwamoto T; Kato S; Miyazono K
    Nature; 2009 Jul; 460(7254):529-33. PubMed ID: 19626115
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities.
    Li S; Li M; Liu K; Zhang H; Zhang S; Zhang C; Yu B
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23982-23990. PubMed ID: 32887800
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.
    Duan R; Pak C; Jin P
    Hum Mol Genet; 2007 May; 16(9):1124-31. PubMed ID: 17400653
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells.
    Ando H; Hirose M; Kurosawa G; Impey S; Mikoshiba K
    Sci Rep; 2017 Oct; 7(1):12642. PubMed ID: 28974737
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Posttranscriptional regulation of microRNA biogenesis in animals.
    Siomi H; Siomi MC
    Mol Cell; 2010 May; 38(3):323-32. PubMed ID: 20471939
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coupled RNA processing and transcription of intergenic primary microRNAs.
    Ballarino M; Pagano F; Girardi E; Morlando M; Cacchiarelli D; Marchioni M; Proudfoot NJ; Bozzoni I
    Mol Cell Biol; 2009 Oct; 29(20):5632-8. PubMed ID: 19667074
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro and in vivo assays for the activity of Drosha complex.
    Lee Y; Kim VN
    Methods Enzymol; 2007; 427():89-106. PubMed ID: 17720480
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel method for stabilizing microRNA mimics.
    Nogimori T; Furutachi K; Ogami K; Hosoda N; Hoshino SI
    Biochem Biophys Res Commun; 2019 Apr; 511(2):422-426. PubMed ID: 30799083
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during
    Zhou L; Lim MYT; Kaur P; Saj A; Bortolamiol-Becet D; Gopal V; Tolwinski N; Tucker-Kellogg G; Okamura K
    Elife; 2018 Jul; 7():. PubMed ID: 30024380
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide analysis of human microRNA stability.
    Li Y; Li Z; Zhou S; Wen J; Geng B; Yang J; Cui Q
    Biomed Res Int; 2013; 2013():368975. PubMed ID: 24187663
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease.
    Boele J; Persson H; Shin JW; Ishizu Y; Newie IS; Søkilde R; Hawkins SM; Coarfa C; Ikeda K; Takayama K; Horie-Inoue K; Ando Y; Burroughs AM; Sasaki C; Suzuki C; Sakai M; Aoki S; Ogawa A; Hasegawa A; Lizio M; Kaida K; Teusink B; Carninci P; Suzuki H; Inoue S; Gunaratne PH; Rovira C; Hayashizaki Y; de Hoon MJ
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11467-72. PubMed ID: 25049417
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluating the susceptibility of AGO2-loaded microRNAs to degradation by nucleases in vitro.
    Elbarbary RA; Maquat LE
    Methods; 2019 Jan; 152():18-22. PubMed ID: 29777751
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Slow Dynamic RNA Switch Regulates Processing of microRNA-21.
    Shortridge MD; Olsen GL; Yang W; Walker MJ; Varani G
    J Mol Biol; 2022 Aug; 434(16):167694. PubMed ID: 35752213
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.
    Wyman SK; Knouf EC; Parkin RK; Fritz BR; Lin DW; Dennis LM; Krouse MA; Webster PJ; Tewari M
    Genome Res; 2011 Sep; 21(9):1450-61. PubMed ID: 21813625
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Post-transcriptional control of miRNA abundance in Arabidopsis.
    Ren G; Yu B
    Plant Signal Behav; 2012 Nov; 7(11):1443-6. PubMed ID: 22960761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.