These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A new scheme for sensitive detection of terahertz photons. Wang Z; Nakajima T; Matsuda S; Komiyama S Nanotechnology; 2013 Jan; 24(2):025205. PubMed ID: 23238779 [TBL] [Abstract][Full Text] [Related]
4. Precise dose evaluation using a commercial phototransistor as a radiation detector. Santos LA; Barros FR; Filho JA; da Silva EF Radiat Prot Dosimetry; 2006; 120(1-4):60-3. PubMed ID: 16702243 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity and dynamic range of FGMOS dosemeters. McNulty PJ; Poole KF; Crissler M; Reneau J; Cellere G; Paccagnella A; Visconti A; Bonanomi M; Stroebel D; Fennell M; Perez R Radiat Prot Dosimetry; 2006; 122(1-4):460-2. PubMed ID: 17387126 [TBL] [Abstract][Full Text] [Related]
6. The estimation of charge footprint size of ultraviolet photon counting imaging detector with induction readout. Zhang X; Zhao B; Zhao F; Liu Y; Miao Z; Zhu X; Yan Q Rev Sci Instrum; 2009 Mar; 80(3):033101. PubMed ID: 19334901 [TBL] [Abstract][Full Text] [Related]
7. Wide-band frequency-tunable terahertz and infrared detection with graphene. Kawano Y Nanotechnology; 2013 May; 24(21):214004. PubMed ID: 23618878 [TBL] [Abstract][Full Text] [Related]
8. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system. Miki S; Takeda M; Fujiwara M; Sasaki M; Wang Z Opt Express; 2009 Dec; 17(26):23557-64. PubMed ID: 20052064 [TBL] [Abstract][Full Text] [Related]
9. Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single-photon detector. Sandberg RL; Padilha LA; Qazilbash MM; Bae WK; Schaller RD; Pietryga JM; Stevens MJ; Baek B; Nam SW; Klimov VI ACS Nano; 2012 Nov; 6(11):9532-40. PubMed ID: 23020520 [TBL] [Abstract][Full Text] [Related]
10. Quantum dot infrared photodetector enhanced by surface plasma wave excitation. Lee SC; Krishna S; Brueck SR Opt Express; 2009 Dec; 17(25):23160-8. PubMed ID: 20052244 [TBL] [Abstract][Full Text] [Related]
11. Proposal for a superconducting photon number resolving detector with large dynamic range. Jahanmirinejad S; Fiore A Opt Express; 2012 Feb; 20(5):5017-28. PubMed ID: 22418306 [TBL] [Abstract][Full Text] [Related]
12. Counting near-infrared single-photons with 95% efficiency. Lita AE; Miller AJ; Nam SW Opt Express; 2008 Mar; 16(5):3032-40. PubMed ID: 18542389 [TBL] [Abstract][Full Text] [Related]
13. Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes. Dynes JF; Yuan ZL; Sharpe AW; Thomas O; Shields AJ Opt Express; 2011 Jul; 19(14):13268-76. PubMed ID: 21747481 [TBL] [Abstract][Full Text] [Related]
14. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence photon measurements from single quantum dots on an optical nanofiber. Yalla R; Nayak KP; Hakuta K Opt Express; 2012 Jan; 20(3):2932-41. PubMed ID: 22330531 [TBL] [Abstract][Full Text] [Related]