These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20348603)

  • 1. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.
    Barreiro MM; Grana DR; Kokubu GA; Luppo MI; Mintzer S; Vigna G
    Biomed Mater; 2010 Apr; 5(2):25010. PubMed ID: 20348603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].
    Ding X; Liang X; Chao Y; Han X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Jun; 18(3):147-9. PubMed ID: 12539662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering.
    Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K
    Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.
    Gronostajski Z; Bandoła P; Skubiszewski T
    Acta Bioeng Biomech; 2010; 12(1):41-6. PubMed ID: 20653324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of human bone marrow stromal cells to a novel ultra-fine-grained and dispersion-strengthened titanium-based material.
    Despang F; Bernhardt A; Lode A; Hanke T; Handtrack D; Kieback B; Gelinsky M
    Acta Biomater; 2010 Mar; 6(3):1006-13. PubMed ID: 19800426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation.
    Chen XB; Li YC; Hodgson PD; Wen C
    Acta Biomater; 2009 Jul; 5(6):2290-302. PubMed ID: 19307162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium oxide as substrate for neural cell growth.
    Carballo-Vila M; Moreno-Burriel B; Chinarro E; Jurado JR; Casañ-Pastor N; Collazos-Castro JE
    J Biomed Mater Res A; 2009 Jul; 90(1):94-105. PubMed ID: 18481786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the method of making dental prosthetic appliances by sintered titanium alloys: effect of copper powder content on properties of sintered titanium alloy.
    Oda Y; Nakanishi K; Sumii T
    Bull Tokyo Dent Coll; 1990 Feb; 31(1):47-52. PubMed ID: 2133441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium dental copings prepared by a powder metallurgy method: a preliminary report.
    Eriksson M; Andersson M; Carlström E
    Int J Prosthodont; 2004; 17(1):11-6. PubMed ID: 15008226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizations of the TiO(2-x) films synthesized by e-beam evaporation for endovascular applications.
    Lin Z; Lee IS; Choi YJ; Noh IS; Chung SM
    Biomed Mater; 2009 Feb; 4(1):015013. PubMed ID: 19075363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of trace elements on biocompatibility of titanium scaffolds.
    Sabetrasekh R; Tiainen H; Reseland JE; Will J; Ellingsen JE; Lyngstadaas SP; Haugen HJ
    Biomed Mater; 2010 Feb; 5(1):15003. PubMed ID: 20057018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering.
    Tadic D; Beckmann F; Schwarz K; Epple M
    Biomaterials; 2004 Jul; 25(16):3335-40. PubMed ID: 14980428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An application of powder metallurgy to dentistry.
    Oda Y; Ueno S; Kudoh Y
    Bull Tokyo Dent Coll; 1995 Nov; 36(4):175-82. PubMed ID: 8689755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-treated nanostructured TiO(2) surface supporting biomimetic growth of apatite.
    Liu X; Zhao X; Fu RK; Ho JP; Ding C; Chu PK
    Biomaterials; 2005 Nov; 26(31):6143-50. PubMed ID: 15927251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.