BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20348605)

  • 1. Time-reversal focusing in microwave hyperthermia for deep-seated tumors.
    Trefná HD; Vrba J; Persson M
    Phys Med Biol; 2010 Apr; 55(8):2167-85. PubMed ID: 20348605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a patch antenna applicator for time reversal hyperthemia.
    Dobsícek Trefná H; Vrba J; Persson M
    Int J Hyperthermia; 2010; 26(2):185-97. PubMed ID: 20146572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The temperature control for cancer thermotherapy using interstitial microwave antenna].
    Xi X; Wang L; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1339-42. PubMed ID: 17228739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors.
    Chen JY; Gandhi OP
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):209-16. PubMed ID: 1555850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and optimization of waveguide multiapplicator hyperthermia systems.
    Boag A; Leviatan Y; Boag A
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational feasibility of deformable mirror microwave hyperthermia technique for localized breast tumors.
    Arunachalam K; Udpa SS; Udpa L
    Int J Hyperthermia; 2007 Nov; 23(7):577-89. PubMed ID: 18038288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.
    Gas P; Miaskowski A; Subramanian M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Design and implementation of an improved invasive antenna for microwave hyperthermia].
    Xue Q; Sun B; Chen L; Wang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):427-30. PubMed ID: 21360981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer.
    Burfeindt MJ; Zastrow E; Hagness SC; Van Veen BD; Medow JE
    Phys Med Biol; 2011 May; 56(9):2743-54. PubMed ID: 21464536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.
    Nguyen PT; Abbosh A; Crozier S
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1335-1344. PubMed ID: 28113219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation.
    Kowalski ME; Behnia B; Webb AG; Jin JM
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1229-41. PubMed ID: 12450353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy.
    Ryan TP; Turner PF; Hamilton B
    Int J Hyperthermia; 2010; 26(5):415-33. PubMed ID: 20597625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design of broadband power divider in microwave hyperthermia system].
    Sun B; Jiang G; Lu X; Cao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):974-7. PubMed ID: 21089651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.