These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 20349330)
1. Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis. Kamali N; Tavallaie M; Bambai B; Karkhane AA; Miri M Biotechnol Lett; 2010 Jul; 32(7):921-7. PubMed ID: 20349330 [TBL] [Abstract][Full Text] [Related]
2. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Matsubara T; Ohshiro T; Nishina Y; Izumi Y Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908 [TBL] [Abstract][Full Text] [Related]
3. Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1. Ohshiro T; Aoi Y; Torii K; Izumi Y Appl Microbiol Biotechnol; 2002 Sep; 59(6):649-57. PubMed ID: 12226720 [TBL] [Abstract][Full Text] [Related]
4. Improving the Biodesulfurization of Crude Oil and Derivatives: A QM/MM Investigation of the Catalytic Mechanism of NADH-FMN Oxidoreductase (DszD). Sousa SF; Sousa JF; Barbosa AC; Ferreira CE; Neves RP; Ribeiro AJ; Fernandes PA; Ramos MJ J Phys Chem A; 2016 Jul; 120(27):5300-6. PubMed ID: 27128525 [TBL] [Abstract][Full Text] [Related]
5. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Xi L; Squires CH; Monticello DJ; Childs JD Biochem Biophys Res Commun; 1997 Jan; 230(1):73-5. PubMed ID: 9020064 [TBL] [Abstract][Full Text] [Related]
6. The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida. Raheb J; Hajipour MJ; Saadati M; Rasekh B; Memari B Iran Biomed J; 2009 Oct; 13(4):207-13. PubMed ID: 19946346 [TBL] [Abstract][Full Text] [Related]
7. Simulation-based protein engineering of Fallahzadeh R; Bambai B; Esfahani K; Sepahi AA Heliyon; 2019 Aug; 5(8):e02193. PubMed ID: 31428711 [TBL] [Abstract][Full Text] [Related]
8. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization. Russell TR; Tu SC Biochemistry; 2004 Oct; 43(40):12887-93. PubMed ID: 15461461 [TBL] [Abstract][Full Text] [Related]
9. Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. Furuya T; Takahashi S; Iwasaki Y; Ishii Y; Kino K; Kirimura K J Biosci Bioeng; 2005 Jun; 99(6):577-85. PubMed ID: 16233834 [TBL] [Abstract][Full Text] [Related]
10. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation. Khairy H; Wübbeler JH; Steinbüchel A Lett Appl Microbiol; 2016 Dec; 63(6):434-441. PubMed ID: 27564089 [TBL] [Abstract][Full Text] [Related]
11. [Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli]. Li GQ; Ma T; Li JH; Li H; Liu RL Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):275-9. PubMed ID: 16736591 [TBL] [Abstract][Full Text] [Related]
12. Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning. Ohshiro T; Yamada H; Shimoda T; Matsubara T; Izumi Y Biosci Biotechnol Biochem; 2004 Aug; 68(8):1712-21. PubMed ID: 15322355 [TBL] [Abstract][Full Text] [Related]
13. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Marohnic CC; Bewley MC; Barber MJ Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270 [TBL] [Abstract][Full Text] [Related]
15. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Trimboli AJ; Quinn GB; Smith ET; Barber MJ Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690 [TBL] [Abstract][Full Text] [Related]
16. Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding. Chung HW; Tu SC Biochemistry; 2012 Jun; 51(24):4880-7. PubMed ID: 22650604 [TBL] [Abstract][Full Text] [Related]
17. Identification of functionally important amino acids in a novel indigo-producing oxygenase from Rhodococcus sp. strain T104. Kwon NR; Chae JC; Choi KY; Yoo M; Zylstra GJ; Kim YM; Kang BS; Kim E Appl Microbiol Biotechnol; 2008 Jun; 79(3):417-22. PubMed ID: 18404265 [TBL] [Abstract][Full Text] [Related]
18. Improving the Catalytic Power of the DszD Enzyme for the Biodesulfurization of Crude Oil and Derivatives. Ferreira P; Sousa SF; Fernandes PA; Ramos MJ Chemistry; 2017 Dec; 23(68):17231-17241. PubMed ID: 28976031 [TBL] [Abstract][Full Text] [Related]
19. Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound. Okai M; Kudo N; Lee WC; Kamo M; Nagata K; Tanokura M Biochemistry; 2006 Apr; 45(16):5103-10. PubMed ID: 16618099 [TBL] [Abstract][Full Text] [Related]
20. Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization. Ohshiro T; Izumi Y Bioseparation; 2000; 9(3):185-8. PubMed ID: 11105249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]