BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20349333)

  • 41. Gadd34 requirement for normal hemoglobin synthesis.
    Patterson AD; Hollander MC; Miller GF; Fornace AJ
    Mol Cell Biol; 2006 Mar; 26(5):1644-53. PubMed ID: 16478986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and testing of E. coli S30 in vitro transcription translation extracts.
    Zawada JF
    Methods Mol Biol; 2012; 805():31-41. PubMed ID: 22094798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction between GADD34 and kinesin superfamily, KIF3A.
    Hasegawa T; Yagi A; Isobe K
    Biochem Biophys Res Commun; 2000 Jan; 267(2):593-6. PubMed ID: 10631107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance benchmarking of four cell-free protein expression systems.
    Gagoski D; Polinkovsky ME; Mureev S; Kunert A; Johnston W; Gambin Y; Alexandrov K
    Biotechnol Bioeng; 2016 Feb; 113(2):292-300. PubMed ID: 26301602
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of cellular GADD34 levels by the 26S proteasome.
    Brush MH; Shenolikar S
    Mol Cell Biol; 2008 Dec; 28(23):6989-7000. PubMed ID: 18794359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid translation system (RTS): a promising alternative for recombinant protein production.
    Betton JM
    Curr Protein Pept Sci; 2003 Feb; 4(1):73-80. PubMed ID: 12570786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-Terminal Amino Acid Affects the Translation Efficiency at Lower Temperatures in a Reconstituted Protein Synthesis System.
    Fuse-Murakami T; Matsumoto R; Kanamori T
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell-Free Expression of a Therapeutic Protein Serratiopeptidase.
    Meng Y; Yang M; Liu W; Li J
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cost-efficiency realization in the Escherichia coli-based cell-free protein synthesis systems.
    Lian Q; Cao H; Wang F
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2351-67. PubMed ID: 25185501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro synthesis of proteins in bacterial extracts.
    Zaher HS; Green R
    Methods Enzymol; 2014; 539():3-15. PubMed ID: 24581435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large scale active-learning-guided exploration for in vitro protein production optimization.
    Borkowski O; Koch M; Zettor A; Pandi A; Batista AC; Soudier P; Faulon JL
    Nat Commun; 2020 Apr; 11(1):1872. PubMed ID: 32312991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Corrigendum to ''Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation'' [Anal. Biochem. 377 (2008) 156-161].
    Seki E; Matsuda N; Yokoyama S; Kigawa T
    Anal Biochem; 2017 Jan; 517():22. PubMed ID: 27712971
    [No Abstract]   [Full Text] [Related]  

  • 53. PROTEIN structure and protein synthesis.
    Nutr Rev; 1957 Apr; 15(4):121-3. PubMed ID: 13419215
    [No Abstract]   [Full Text] [Related]  

  • 54. Protein mercaptides.
    HUGHES WL
    Cold Spring Harb Symp Quant Biol; 1950; 14():79-84. PubMed ID: 15442900
    [No Abstract]   [Full Text] [Related]  

  • 55. A highly optimized human in vitro translation system.
    Bothe A; Ban N
    Cell Rep Methods; 2024 Apr; 4(4):100755. PubMed ID: 38608690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A highly efficient human cell-free translation system.
    Aleksashin NA; Chang ST; Cate JHD
    RNA; 2023 Dec; 29(12):1960-1972. PubMed ID: 37793791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A highly efficient human cell-free translation system.
    Aleksashin NA; Chang ST; Cate JHD
    bioRxiv; 2023 May; ():. PubMed ID: 36798401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of human translation-competent lysates using dual centrifugation.
    Gurzeler LA; Ziegelmüller J; Mühlemann O; Karousis ED
    RNA Biol; 2022 Jan; 19(1):78-88. PubMed ID: 34965175
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design, Development and Optimization of a Functional Mammalian Cell-Free Protein Synthesis Platform.
    Heide C; Buldum G; Moya-Ramirez I; Ces O; Kontoravdi C; Polizzi KM
    Front Bioeng Biotechnol; 2020; 8():604091. PubMed ID: 33604330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of cell-based versus cell-free mammalian systems for the production of a recombinant human bone morphogenic growth factor.
    Jérôme V; Thoring L; Salzig D; Kubick S; Freitag R
    Eng Life Sci; 2017 Oct; 17(10):1097-1107. PubMed ID: 32624737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.