These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20349527)

  • 1. Neural decoding based on probabilistic neural network.
    Yu Y; Zhang SM; Zhang HJ; Liu XC; Zhang QS; Zheng XX; Dai JH
    J Zhejiang Univ Sci B; 2010 Apr; 11(4):298-306. PubMed ID: 20349527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FPGA implementation of hardware processing modules as coprocessors in brain-machine interfaces.
    Wang D; Hao Y; Zhu X; Zhao T; Wang Y; Chen Y; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4613-6. PubMed ID: 22255365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time decision fusion for multimodal neural prosthetic devices.
    White JR; Levy T; Bishop W; Beaty JD
    PLoS One; 2010 Mar; 5(3):e9493. PubMed ID: 20209151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural decoding using local field potential based on partial least squares regression.
    Wang R; Lou X; Jiang B; Cheng W; Zheng X; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6365-6. PubMed ID: 22255794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Movement Intent Decoders Trained With Dataset Aggregation for Prosthetic Limb Control.
    Dantas H; Warren DJ; Wendelken SM; Davis TS; Clark GA; Mathews VJ
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3192-3203. PubMed ID: 30835207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for neural decoding in motor cortex.
    Liu F; Meamardoost S; Gunawan R; Komiyama T; Mewes C; Zhang Y; Hwang E; Wang L
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36148535
    [No Abstract]   [Full Text] [Related]  

  • 10. Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder.
    Willsey MS; Nason-Tomaszewski SR; Ensel SR; Temmar H; Mender MJ; Costello JT; Patil PG; Chestek CA
    Nat Commun; 2022 Nov; 13(1):6899. PubMed ID: 36371498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time decoding of nonstationary neural activity in motor cortex.
    Wu W; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):213-22. PubMed ID: 18586600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network.
    Premchand B; Toe KK; Wang C; Shaikh S; Libedinsky C; Ang KK; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3007-3010. PubMed ID: 33018638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To sort or not to sort: the impact of spike-sorting on neural decoding performance.
    Todorova S; Sadtler P; Batista A; Chase S; Ventura V
    J Neural Eng; 2014 Oct; 11(5):056005. PubMed ID: 25082508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding hindlimb kinematics from primate motor cortex using long short-term memory recurrent neural networks.
    Wang Y; Truccolo W; Borton DA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1944-1947. PubMed ID: 30440779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.