BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20349929)

  • 1. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study.
    Lau JK; Li XB; Cheng YK
    J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An update view on the substrate recognition mechanism of phosphodiesterases: a computational study of PDE10 and PDE4 bound with cyclic nucleotides.
    Lau JK; Cheng YK
    Biopolymers; 2012 Nov; 97(11):910-22. PubMed ID: 22899366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of cyclic nucleotide hydrolysis in the phosphodiesterase catalytic site.
    Salter EA; Wierzbicki A
    J Phys Chem B; 2007 May; 111(17):4547-52. PubMed ID: 17425352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insight into substrate specificity of phosphodiesterase 10.
    Wang H; Liu Y; Hou J; Zheng M; Robinson H; Ke H
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5782-7. PubMed ID: 17389385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the activity of drugs that inhibit phosphodiesterases.
    Card GL; England BP; Suzuki Y; Fong D; Powell B; Lee B; Luu C; Tabrizizad M; Gillette S; Ibrahim PN; Artis DR; Bollag G; Milburn MV; Kim SH; Schlessinger J; Zhang KY
    Structure; 2004 Dec; 12(12):2233-47. PubMed ID: 15576036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10.
    Wang H; Robinson H; Ke H
    J Mol Biol; 2007 Aug; 371(2):302-7. PubMed ID: 17582435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity.
    Scapin G; Patel SB; Chung C; Varnerin JP; Edmondson SD; Mastracchio A; Parmee ER; Singh SB; Becker JW; Van der Ploeg LH; Tota MR
    Biochemistry; 2004 May; 43(20):6091-100. PubMed ID: 15147193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity.
    Matthiesen K; Nielsen J
    Biochem J; 2009 Oct; 423(3):401-9. PubMed ID: 19689430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of cyclic GMP in rat peritoneal macrophages.
    Witwicka H; Kobiałka M; Gorczyca WA
    Acta Biochim Pol; 2002; 49(4):891-7. PubMed ID: 12545195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP.
    Kotera J; Fujishige K; Yuasa K; Omori K
    Biochem Biophys Res Commun; 1999 Aug; 261(3):551-7. PubMed ID: 10441464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins.
    Butt E; Beltman J; Becker DE; Jensen GS; Rybalkin SD; Jastorff B; Beavo JA
    Mol Pharmacol; 1995 Feb; 47(2):340-7. PubMed ID: 7870042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphodiesterases in the central nervous system.
    Kleppisch T
    Handb Exp Pharmacol; 2009; (191):71-92. PubMed ID: 19089326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiolabeled ligand binding to the catalytic or allosteric sites of PDE5 and PDE11.
    Weeks JL; Blount MA; Beasley A; Zoraghi R; Thomas MK; Sekhar KR; Corbin JD; Francis SH
    Methods Mol Biol; 2005; 307():239-62. PubMed ID: 15988068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity.
    Huai Q; Liu Y; Francis SH; Corbin JD; Ke H
    J Biol Chem; 2004 Mar; 279(13):13095-101. PubMed ID: 14668322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.
    Cheng J; Grande JP
    Exp Biol Med (Maywood); 2007 Jan; 232(1):38-51. PubMed ID: 17202584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cyclic nucleotide phosphodiesterases with cyclic GMP analogs: topology of the catalytic domains.
    Beltman J; Becker DE; Butt E; Jensen GS; Rybalkin SD; Jastorff B; Beavo JA
    Mol Pharmacol; 1995 Feb; 47(2):330-9. PubMed ID: 7870041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules.
    Sung BJ; Hwang KY; Jeon YH; Lee JI; Heo YS; Kim JH; Moon J; Yoon JM; Hyun YL; Kim E; Eum SJ; Park SY; Lee JO; Lee TG; Ro S; Cho JM
    Nature; 2003 Sep; 425(6953):98-102. PubMed ID: 12955149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on cyclic nucleotide phosphodiesterase (PDE) inhibitors: phosphodiesterases and drug selectivity.
    Gupta R; Kumar G; Kumar RS
    Methods Find Exp Clin Pharmacol; 2005 Mar; 27(2):101-18. PubMed ID: 15834463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [cGMP-activated phosphodiesterase from human brain: kinetic and regulatory properties].
    Bobruskin ID; Medvedeva MV; Severin ES
    Biokhimiia; 1991 Jun; 56(6):999-1010. PubMed ID: 1657216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system.
    Iffland A; Kohls D; Low S; Luan J; Zhang Y; Kothe M; Cao Q; Kamath AV; Ding YH; Ellenberger T
    Biochemistry; 2005 Jun; 44(23):8312-25. PubMed ID: 15938621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.