These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 20349970)

  • 1. Secondary structure in de novo designed peptides induced by electrostatic interaction with a lipid bilayer membrane.
    Nygren P; Lundqvist M; Liedberg B; Jonsson BH; Ederth T
    Langmuir; 2010 May; 26(9):6437-48. PubMed ID: 20349970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers.
    Chung LA; Thompson TE
    Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid.
    Rankin SE; Watts A; Pinheiro TJ
    Biochemistry; 1998 Sep; 37(36):12588-95. PubMed ID: 9730831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting peptide amphiphilicity for membrane pore formation.
    Lorin A; Noël M; Provencher MÈ; Turcotte V; Masson C; Cardinal S; Lagüe P; Voyer N; Auger M
    Biochemistry; 2011 Nov; 50(43):9409-20. PubMed ID: 21942823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes.
    Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides.
    Wieprecht T; Dathe M; Epand RM; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 Oct; 36(42):12869-80. PubMed ID: 9335545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction.
    Lew S; Caputo GA; London E
    Biochemistry; 2003 Sep; 42(36):10833-42. PubMed ID: 12962508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.