BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 20349978)

  • 1. Understanding the dynamics behind the photoisomerization of a light-driven fluorene molecular rotary motor.
    Kazaryan A; Kistemaker JC; Schäfer LV; Browne WR; Feringa BL; Filatov M
    J Phys Chem A; 2010 Apr; 114(15):5058-67. PubMed ID: 20349978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical design of a light-driven molecular rotary motor with low energy helical inversion: 9-(5-methyl-2-phenyl-2-cyclopenten-1-ylidene)-9H-fluorene.
    Amatatsu Y
    J Phys Chem A; 2011 Nov; 115(46):13611-8. PubMed ID: 21967194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotation.
    van Delden RA; ter Wiel MK; de Jong H; Meetsma A; Feringa BL
    Org Biomol Chem; 2004 May; 2(10):1531-41. PubMed ID: 15136811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical design of a fluorene-based light-driven molecular rotary motor with constant rotation.
    Amatatsu Y
    J Phys Chem A; 2012 Oct; 116(41):10182-93. PubMed ID: 22998359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of topographical features around the conical intersections of fluorene-based light-driven molecular rotary motor.
    Amatatsu Y
    J Phys Chem A; 2013 May; 117(17):3689-96. PubMed ID: 23557441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dynamics of light-driven chiral molecular motors.
    Yamaki M; Nakayama S; Hoki K; Kono H; Fujimura Y
    Phys Chem Chem Phys; 2009 Mar; 11(11):1662-78. PubMed ID: 19290336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational design of a light-driven molecular motor.
    Albu NM; Bergin E; Yaron DJ
    J Phys Chem A; 2009 Jun; 113(25):7090-6. PubMed ID: 19489602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerization and electronic relaxation of azobenzene after being excited to higher electronic states.
    Wang L; Xu W; Yi C; Wang X
    J Mol Graph Model; 2009 Apr; 27(7):792-6. PubMed ID: 19128994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Hopping Excited-State Dynamics Study of the Photoisomerization of a Light-Driven Fluorene Molecular Rotary Motor.
    Kazaryan A; Lan Z; Schäfer LV; Thiel W; Filatov M
    J Chem Theory Comput; 2011 Jul; 7(7):2189-99. PubMed ID: 26606488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors.
    Klok M; Browne WR; Feringa BL
    Phys Chem Chem Phys; 2009 Oct; 11(40):9124-31. PubMed ID: 19812832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors.
    Pollard MM; Wesenhagen PV; Pijper D; Feringa BL
    Org Biomol Chem; 2008 May; 6(9):1605-12. PubMed ID: 18421393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study on the working mechanism of a stilbene light-driven molecular rotary motor: sloped minimal energy path and unidirectional nonadiabatic photoisomerization.
    Liu F; Morokuma K
    J Am Chem Soc; 2012 Mar; 134(10):4864-76. PubMed ID: 22329590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-driven monodirectional molecular rotor.
    Koumura N; Zijlstra RW; van Delden RA; Harada N; Feringa BL
    Nature; 1999 Sep; 401(6749):152-5. PubMed ID: 10490022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional study of the ground and excited state potential energy surfaces of a light-driven rotary molecular motor (3R,3'R)-(P,P)-trans-1,1',2,2',3,3',4,4'-octahydro-3,3'-dimethyl-4,4'-biphenanthrylidene.
    Kazaryan A; Filatov M
    J Phys Chem A; 2009 Oct; 113(43):11630-4. PubMed ID: 19627111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion.
    Filatov M; Olivucci M
    J Org Chem; 2014 Apr; 79(8):3587-600. PubMed ID: 24673424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased speed of rotation for the smallest light-driven molecular motor.
    ter Wiel MK; van Delden RA; Meetsma A; Feringa BL
    J Am Chem Soc; 2003 Dec; 125(49):15076-86. PubMed ID: 14653742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New mechanistic insight in the thermal helix inversion of second-generation molecular motors.
    Klok M; Walko M; Geertsema EM; Ruangsupapichat N; Kistemaker JC; Meetsma A; Feringa BL
    Chemistry; 2008; 14(35):11183-93. PubMed ID: 18979464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Watching" the Dark State in Ultrafast Nonadiabatic Photoisomerization Process of a Light-Driven Molecular Rotary Motor.
    Pang X; Cui X; Hu D; Jiang C; Zhao D; Lan Z; Li F
    J Phys Chem A; 2017 Feb; 121(6):1240-1249. PubMed ID: 28103031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-classical modeling of photoisomerization of polyatomic molecules.
    Tranca DC; Neufeld AA
    J Chem Phys; 2010 Apr; 132(13):134109. PubMed ID: 20387923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast dynamics in the power stroke of a molecular rotary motor.
    Conyard J; Addison K; Heisler IA; Cnossen A; Browne WR; Feringa BL; Meech SR
    Nat Chem; 2012 May; 4(7):547-51. PubMed ID: 22717439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.