These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 2035024)

  • 21. Competitive interactions between retinal ganglion cells during prenatal development.
    Shatz CJ
    J Neurobiol; 1990 Jan; 21(1):197-211. PubMed ID: 2181063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
    Soodak RE; Shapley RM; Kaplan E
    J Neurophysiol; 1987 Aug; 58(2):267-75. PubMed ID: 3655866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties.
    Mastronarde DN
    J Neurophysiol; 1987 Feb; 57(2):381-413. PubMed ID: 3559685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence of order in visual system development.
    Shatz CJ
    J Physiol Paris; 1996; 90(3-4):141-50. PubMed ID: 9116657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus.
    Neuenschwander S; Singer W
    Nature; 1996 Feb; 379(6567):728-32. PubMed ID: 8602219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections.
    Torborg CL; Hansen KA; Feller MB
    Nat Neurosci; 2005 Jan; 8(1):72-8. PubMed ID: 15608630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells.
    Mastronarde DN
    J Neurophysiol; 1983 Feb; 49(2):303-24. PubMed ID: 6300340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Responses of isolated cat retinal ganglion cells to injected currents during development.
    Chalupa LM; Skaliora I; Scobey RP
    Prog Brain Res; 1993; 95():25-31. PubMed ID: 8388114
    [No Abstract]   [Full Text] [Related]  

  • 30. Retinal waves: mechanisms and function in visual system development.
    Firth SI; Wang CT; Feller MB
    Cell Calcium; 2005 May; 37(5):425-32. PubMed ID: 15820390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves.
    Feller MB; Wellis DP; Stellwagen D; Werblin FS; Shatz CJ
    Science; 1996 May; 272(5265):1182-7. PubMed ID: 8638165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of concerted firing among retinal ganglion cells.
    Brivanlou IH; Warland DK; Meister M
    Neuron; 1998 Mar; 20(3):527-39. PubMed ID: 9539126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early postnatal development of visual function in ganglion cells of the cat retina.
    Tootle JS
    J Neurophysiol; 1993 May; 69(5):1645-60. PubMed ID: 8509831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Maturation and plasticity of visual system: neurogenesis, synaptogenesis, and myelogenesis. Report I. Retina and retinogeniculate projections].
    Zueva MV
    Vestn Oftalmol; 2012; 128(3):37-41. PubMed ID: 23120924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro model of the kitten retinogeniculate pathway.
    Guido W; Lo FS; Erzurumlu RS
    J Neurophysiol; 1997 Jan; 77(1):511-6. PubMed ID: 9120593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity.
    Kaplan E; Shapley RM
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2755-7. PubMed ID: 3458235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RIM1/2 in retinal ganglion cells are required for the refinement of ipsilateral axons and eye-specific segregation.
    Assali A; Le Magueresse C; Bennis M; Nicol X; Gaspar P; Rebsam A
    Sci Rep; 2017 Jun; 7(1):3236. PubMed ID: 28607399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus.
    Cleland BG; Dubin MW; Levick WR
    J Physiol; 1971 Sep; 217(2):473-96. PubMed ID: 5097609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.
    Blankenship AG; Hamby AM; Firl A; Vyas S; Maxeiner S; Willecke K; Feller MB
    J Neurosci; 2011 Jul; 31(27):9998-10008. PubMed ID: 21734291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monocular enucleation alters retinal waves in the surviving eye.
    Failor SW; Ng A; Cheng HJ
    Neural Dev; 2018 Mar; 13(1):4. PubMed ID: 29573745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.