BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20350603)

  • 1. Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats.
    Kim T; Masamoto K; Fukuda M; Vazquez A; Kim SG
    Neuroimage; 2010 Aug; 52(1):224-33. PubMed ID: 20350603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex.
    Masamoto K; Fukuda M; Vazquez A; Kim SG
    Eur J Neurosci; 2009 Jul; 30(2):242-50. PubMed ID: 19659924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia.
    Liu ZM; Schmidt KF; Sicard KM; Duong TQ
    Magn Reson Med; 2004 Aug; 52(2):277-85. PubMed ID: 15282809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex.
    Masamoto K; Kim T; Fukuda M; Wang P; Kim SG
    Cereb Cortex; 2007 Apr; 17(4):942-50. PubMed ID: 16731882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat.
    Silva AC; Lee SP; Yang G; Iadecola C; Kim SG
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):871-9. PubMed ID: 10458594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons.
    Wey HY; Wang DJ; Duong TQ
    J Cereb Blood Flow Metab; 2011 Feb; 31(2):715-24. PubMed ID: 20827260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal characteristics of low-frequency BOLD signal fluctuations in isoflurane-anesthetized rat brain.
    Kannurpatti SS; Biswal BB; Kim YR; Rosen BR
    Neuroimage; 2008 May; 40(4):1738-47. PubMed ID: 18339559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the α₂-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex.
    Fukuda M; Vazquez AL; Zong X; Kim SG
    Eur J Neurosci; 2013 Jan; 37(1):80-95. PubMed ID: 23106361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents.
    Kida I; Yamamoto T
    Brain Res; 2010 Mar; 1317():116-23. PubMed ID: 20059991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats.
    Duong TQ
    Brain Res; 2007 Mar; 1135(1):186-94. PubMed ID: 17198686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals.
    Sicard KM; Duong TQ
    Neuroimage; 2005 Apr; 25(3):850-8. PubMed ID: 15808985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition.
    Liu X; Zhu XH; Zhang Y; Chen W
    Cereb Cortex; 2011 Feb; 21(2):374-84. PubMed ID: 20530220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw.
    Goloshevsky AG; Silva AC; Dodd SJ; Koretsky AP
    Brain Res; 2008 Feb; 1195():67-76. PubMed ID: 18206862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal evolution of the functional magnetic resonance imaging response to ultrashort stimuli.
    Hirano Y; Stefanovic B; Silva AC
    J Neurosci; 2011 Jan; 31(4):1440-7. PubMed ID: 21273428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats.
    Kida I; Yamamoto T
    Neurosci Res; 2008 Sep; 62(1):25-31. PubMed ID: 18602178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevating intracranial pressure reverses the decrease in deoxygenated hemoglobin and abolishes the post-stimulus overshoot upon somatosensory activation in rats.
    Füchtemeier M; Leithner C; Offenhauser N; Foddis M; Kohl-Bareis M; Dirnagl U; Lindauer U; Royl G
    Neuroimage; 2010 Aug; 52(2):445-54. PubMed ID: 20420930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex.
    Norup Nielsen A; Lauritzen M
    J Physiol; 2001 Jun; 533(Pt 3):773-85. PubMed ID: 11410634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low frequency stimulation of the perforant pathway generates anesthesia-specific variations in neural activity and BOLD responses in the rat dentate gyrus.
    Krautwald K; Angenstein F
    J Cereb Blood Flow Metab; 2012 Feb; 32(2):291-305. PubMed ID: 21863039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation.
    Shim HJ; Jung WB; Schlegel F; Lee J; Kim S; Lee J; Kim SG
    Neuroimage; 2018 Aug; 177():30-44. PubMed ID: 29730495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal MRI studies in the isoflurane-anesthetized rat: long-term effects of a short hypoxic episode on regulation of cerebral blood flow as assessed by pulsed arterial spin labelling.
    Wegener S; Wong EC
    NMR Biomed; 2008 Aug; 21(7):696-703. PubMed ID: 18275045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.