BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20351062)

  • 1. Carotid body chemosensory responses in mice deficient of TASK channels.
    Ortega-Sáenz P; Levitsky KL; Marcos-Almaraz MT; Bonilla-Henao V; Pascual A; López-Barneo J
    J Gen Physiol; 2010 Apr; 135(4):379-92. PubMed ID: 20351062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells.
    Matsuoka H; Pokorski M; Harada K; Yoshimura R; Inoue M
    J Histochem Cytochem; 2020 Oct; 68(10):679-690. PubMed ID: 32886017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction.
    Wyatt CN; Wright C; Bee D; Peers C
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):295-9. PubMed ID: 7529413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells.
    Inoue M; Matsuoka H; Lesage F; Harada K
    FASEB J; 2019 Jan; 33(1):455-468. PubMed ID: 30001168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are oxygen dependent K+ channels essential for carotid body chemo-transduction?
    Donnelly DF
    Respir Physiol; 1997 Nov; 110(2-3):211-8. PubMed ID: 9407613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing.
    Trapp S; Aller MI; Wisden W; Gourine AV
    J Neurosci; 2008 Aug; 28(35):8844-50. PubMed ID: 18753386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development.
    Kim D; Papreck JR; Kim I; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):228-35. PubMed ID: 21530688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Chemosensory Transduction in the Carotid Body.
    Lazarov NE; Atanasova DY
    Adv Anat Embryol Cell Biol; 2023; 237():49-62. PubMed ID: 37946077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons.
    González JA; Jensen LT; Doyle SE; Miranda-Anaya M; Menaker M; Fugger L; Bayliss DA; Burdakov D
    Eur J Neurosci; 2009 Jul; 30(1):57-64. PubMed ID: 19508695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of glomus cell K+ conductance by 4-aminopyridine is not related to [Ca2+]i, dopamine release and chemosensory discharge from carotid body.
    Roy A; Rozanov C; Buerk DG; Mokashi A; Lahiri S
    Brain Res; 1998 Mar; 785(2):228-35. PubMed ID: 9518628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells.
    Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():241-8. PubMed ID: 10849664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression analyses reveal metabolic specifications in acute O
    Gao L; Bonilla-Henao V; García-Flores P; Arias-Mayenco I; Ortega-Sáenz P; López-Barneo J
    J Physiol; 2017 Sep; 595(18):6091-6120. PubMed ID: 28718507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic properties of cultured rat carotid body chemoreceptors grown in normoxic and hypoxic environments.
    Jackson A; Nurse C
    J Neurochem; 1997 Aug; 69(2):645-54. PubMed ID: 9231723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal hyperoxia impairs acute oxygen sensing of rat glomus cells by reduced membrane depolarization.
    Kim I; Donnelly DF; Carroll JL
    Adv Exp Med Biol; 2012; 758():49-54. PubMed ID: 23080142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K(+) channels in O(2) sensing and postnatal development of carotid body glomus cell response to hypoxia.
    Kim D
    Respir Physiol Neurobiol; 2013 Jan; 185(1):44-56. PubMed ID: 22801091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of p11 and TASK1 Channels in Rat Carotid Body Glomus Cells Subjected to Chronic Intermittent Hypoxia.
    Matsuoka H; Pokorski M; Takeda K; Okada Y; Harada K; Inoue M
    J UOEH; 2022; 44(3):249-255. PubMed ID: 36089342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
    Kim D; Cavanaugh EJ; Kim I; Carroll JL
    J Physiol; 2009 Jun; 587(Pt 12):2963-75. PubMed ID: 19403596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of voltage-dependent K
    Wang J; Kim D
    J Physiol; 2018 Aug; 596(15):3119-3136. PubMed ID: 29160573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia.
    Ortiz FC; Del Rio R; Ebensperger G; Reyes VR; Alcayaga J; Varas R; Iturriaga R
    Respir Physiol Neurobiol; 2013 Feb; 185(3):600-7. PubMed ID: 23219812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.