BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20351295)

  • 1. Cell pole-specific activation of a critical bacterial cell cycle kinase.
    Iniesta AA; Hillson NJ; Shapiro L
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7012-7. PubMed ID: 20351295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus.
    Angelastro PS; Sliusarenko O; Jacobs-Wagner C
    J Bacteriol; 2010 Jan; 192(2):539-52. PubMed ID: 19897656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DivL performs critical cell cycle functions in Caulobacter crescentus independent of kinase activity.
    Reisinger SJ; Huntwork S; Viollier PH; Ryan KR
    J Bacteriol; 2007 Nov; 189(22):8308-20. PubMed ID: 17827294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar remodeling and histidine kinase activation, which is essential for Caulobacter cell cycle progression, are dependent on DNA replication initiation.
    Iniesta AA; Hillson NJ; Shapiro L
    J Bacteriol; 2010 Aug; 192(15):3893-902. PubMed ID: 20525830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus.
    Tsokos CG; Perchuk BS; Laub MT
    Dev Cell; 2011 Mar; 20(3):329-41. PubMed ID: 21397844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division.
    Jacobs C; Domian IJ; Maddock JR; Shapiro L
    Cell; 1999 Apr; 97(1):111-20. PubMed ID: 10199407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functions of the CckA histidine kinase in Caulobacter cell cycle control.
    Jacobs C; Ausmees N; Cordwell SJ; Shapiro L; Laub MT
    Mol Microbiol; 2003 Mar; 47(5):1279-90. PubMed ID: 12603734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell fate regulation governed by a repurposed bacterial histidine kinase.
    Childers WS; Xu Q; Mann TH; Mathews II; Blair JA; Deacon AM; Shapiro L
    PLoS Biol; 2014 Oct; 12(10):e1001979. PubMed ID: 25349992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in DivL and CckA rescue a divJ null mutant of Caulobacter crescentus by reducing the activity of CtrA.
    Pierce DL; O'Donnol DS; Allen RC; Javens JW; Quardokus EM; Brun YV
    J Bacteriol; 2006 Apr; 188(7):2473-82. PubMed ID: 16547034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models.
    Subramanian K; Paul MR; Tyson JJ
    PLoS Comput Biol; 2015 Jul; 11(7):e1004348. PubMed ID: 26186202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus.
    Chen YE; Tsokos CG; Biondi EG; Perchuk BS; Laub MT
    J Bacteriol; 2009 Dec; 191(24):7417-29. PubMed ID: 19783630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression.
    Iniesta AA; McGrath PT; Reisenauer A; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10935-40. PubMed ID: 16829582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of cell cycle signals by multi-PAS domain kinases.
    Mann TH; Shapiro L
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7166-E7173. PubMed ID: 29987042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus.
    Ausmees N; Jacobs-Wagner C
    Annu Rev Microbiol; 2003; 57():225-47. PubMed ID: 14527278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the bacterial cell cycle by an integrated genetic circuit.
    Biondi EG; Reisinger SJ; Skerker JM; Arif M; Perchuk BS; Ryan KR; Laub MT
    Nature; 2006 Dec; 444(7121):899-904. PubMed ID: 17136100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain.
    Paul R; Weiser S; Amiot NC; Chan C; Schirmer T; Giese B; Jenal U
    Genes Dev; 2004 Mar; 18(6):715-27. PubMed ID: 15075296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator.
    Ohta N; Newton A
    J Bacteriol; 2003 Aug; 185(15):4424-31. PubMed ID: 12867451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Control of Signal Flow Within a Bacterial Multi-Kinase Network.
    Kowallis KA; Silfani EM; Kasumu AP; Rong G; So V; Childers WS
    ACS Synth Biol; 2020 Jul; 9(7):1705-1713. PubMed ID: 32559383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.
    Wu J; Ohta N; Newton A
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1443-8. PubMed ID: 9465034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.