These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20351346)

  • 1. Cyclotron production of 99mTc: an approach to the medical isotope crisis.
    Guérin B; Tremblay S; Rodrigue S; Rousseau JA; Dumulon-Perreault V; Lecomte R; van Lier JE; Zyuzin A; van Lier EJ
    J Nucl Med; 2010 Apr; 51(4):13N-6N. PubMed ID: 20351346
    [No Abstract]   [Full Text] [Related]  

  • 2. Radioisotopes: The medical testing crisis.
    Van Noorden R
    Nature; 2013 Dec; 504(7479):202-4. PubMed ID: 24336269
    [No Abstract]   [Full Text] [Related]  

  • 3. Overcoming the 99mTc shortage: are options being overlooked?
    Pillai MR; Knapp FF
    J Nucl Med; 2011 Feb; 52(2):15N-16N, 28N. PubMed ID: 21270452
    [No Abstract]   [Full Text] [Related]  

  • 4. Medical isotope shortage reaches crisis level.
    Gould P
    Nature; 2009 Jul; 460(7253):312-3. PubMed ID: 19606111
    [No Abstract]   [Full Text] [Related]  

  • 5. Implementation of Multi-Curie Production of (99m)Tc by Conventional Medical Cyclotrons.
    Bénard F; Buckley KR; Ruth TJ; Zeisler SK; Klug J; Hanemaayer V; Vuckovic M; Hou X; Celler A; Appiah JP; Valliant J; Kovacs MS; Schaffer P
    J Nucl Med; 2014 Jun; 55(6):1017-22. PubMed ID: 24722529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclotron production of (99m)Tc: experimental measurement of the (100)Mo(p,x)(99)Mo, (99m)Tc and (99g)Tc excitation functions from 8 to 18 MeV.
    Gagnon K; Bénard F; Kovacs M; Ruth TJ; Schaffer P; Wilson JS; McQuarrie SA
    Nucl Med Biol; 2011 Aug; 38(6):907-16. PubMed ID: 21843787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdenum-99 production from reactor irradiation of molybdenum targets: a viable strategy for enhanced availability of technetium-99m.
    Pillai MR; Knapp FF
    Q J Nucl Med Mol Imaging; 2012 Aug; 56(4):385-99. PubMed ID: 23013668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets.
    Celler A; Hou X; Bénard F; Ruth T
    Phys Med Biol; 2011 Sep; 56(17):5469-84. PubMed ID: 21813960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.
    Pillai MR; Dash A; Knapp FF
    J Nucl Med; 2015 Jan; 56(1):159-61. PubMed ID: 25537991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility studies towards future self-sufficient supply of the (99)Mo-(99m)Tc isotopes with Japanese accelerators.
    Nakai K; Takahashi N; Hatazawa J; Shinohara A; Hayashi Y; Ikeda H; Kanai Y; Watabe T; Fukuda M; Hatanaka K
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(10):413-21. PubMed ID: 25504230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin.
    Moustapha ME; Ehrhardt GJ; Smith CJ; Szajek LP; Eckelman WC; Jurisson SS
    Nucl Med Biol; 2006 Jan; 33(1):81-9. PubMed ID: 16459262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of alternative production routes of 99mTc: deuteron induced reactions on 100 Mo.
    Tárkányi F; Hermanne A; Takács S; Sonck M; Szucs Z; Király B; Ignatyuk AV
    Appl Radiat Isot; 2011 Jan; 69(1):18-25. PubMed ID: 20817541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-standard radionuclide production for PET in Japan.
    Fujibayashi Y; Suzuki K; Fukumura T; Mori T; Kasamatsu S
    Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):140-4. PubMed ID: 18043540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.
    Hou X; Tanguay J; Buckley K; Schaffer P; Bénard F; Ruth TJ; Celler A
    Phys Med Biol; 2016 Jan; 61(2):542-53. PubMed ID: 26683410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.
    Morreale AC; Novog DR; Luxat JC
    Appl Radiat Isot; 2012 Jan; 70(1):20-34. PubMed ID: 21816619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclotron production of
    Gumiela M
    Nucl Med Biol; 2018 Mar; 58():33-41. PubMed ID: 29331921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing Technetium-99m Shortage.
    Mahesh M; Madsen M
    J Am Coll Radiol; 2017 May; 14(5):681-683. PubMed ID: 28381357
    [No Abstract]   [Full Text] [Related]  

  • 18. Production and separation of ''non-standard'' PET nuclides at a large cyclotron facility: the experiences at the Paul Scherrer Institute in Switzerland.
    Hohn A; Zimmermann K; Schaub E; Hirzel W; Schubiger PA; Schibli R
    Q J Nucl Med Mol Imaging; 2008 Jun; 52(2):145-50. PubMed ID: 18174878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum-99/technetium-99m management: race against time.
    Ahmad M
    Ann Nucl Med; 2011 Nov; 25(9):677-9. PubMed ID: 21728046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the experimental yield of
    Bondar BM; Leshchenko BY; Kadenko IM; Kmetyuk YV
    Appl Radiat Isot; 2022 Nov; 189():110431. PubMed ID: 36122547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.