These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20351600)

  • 1. Visual impact of Zernike and Seidel forms of monochromatic aberrations.
    Cheng X; Bradley A; Ravikumar S; Thibos LN
    Optom Vis Sci; 2010 May; 87(5):300-12. PubMed ID: 20351600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting subjective judgment of best focus with objective image quality metrics.
    Cheng X; Bradley A; Thibos LN
    J Vis; 2004 Apr; 4(4):310-21. PubMed ID: 15134478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual acuity as a function of Zernike mode and level of root mean square error.
    Applegate RA; Ballentine C; Gross H; Sarver EJ; Sarver CA
    Optom Vis Sci; 2003 Feb; 80(2):97-105. PubMed ID: 12597324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of higher-order wavefront aberrations on binocular summation.
    Fam HB; Lim KL
    J Refract Surg; 2004; 20(5):S570-5. PubMed ID: 15523977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are all aberrations equal?
    Applegate RA; Sarver EJ; Khemsara V
    J Refract Surg; 2002; 18(5):S556-62. PubMed ID: 12361157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the accommodative response from wavefront aberrations.
    Tarrant J; Roorda A; Wildsoet CF
    J Vis; 2010 May; 10(5):4. PubMed ID: 20616123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology.
    Rocha KM; Vabre L; Harms F; Chateau N; Krueger RR
    J Refract Surg; 2007 Nov; 23(9):953-9. PubMed ID: 18041253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].
    Fritzsch M; Dawczynski J; Jurkutat S; Vollandt R; Strobel J
    Ophthalmologe; 2011 Jun; 108(6):553-60. PubMed ID: 21695608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spherical aberration on visual performance and refractive state for stimuli and tasks typical of night viewing.
    Marín-Franch I; Xu R; Bradley A; Thibos LN; López-Gil N
    J Optom; 2018; 11(3):144-152. PubMed ID: 29292240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences between wavefront and subjective refraction for infrared light.
    Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN
    Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration.
    Zheleznyak L; Jung H; Yoon G
    Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):70-7. PubMed ID: 24265022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes.
    Oshika T; Okamoto C; Samejima T; Tokunaga T; Miyata K
    Ophthalmology; 2006 Oct; 113(10):1807-12. PubMed ID: 16876865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical quality of the Visian Implantable Collamer Lens for different refractive powers.
    Pérez-Vives C; Domínguez-Vicent A; Ferrer-Blasco T; Pons ÁM; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2013 May; 251(5):1423-9. PubMed ID: 23142994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A population study on changes in wave aberrations with accommodation.
    Cheng H; Barnett JK; Vilupuru AS; Marsack JD; Kasthurirangan S; Applegate RA; Roorda A
    J Vis; 2004 Apr; 4(4):272-80. PubMed ID: 15134474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.