BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2035176)

  • 1. Mechanisms of benzene carcinogenesis: application of a physiological model of benzene pharmacokinetics and metabolism.
    Bois FY; Smith MT; Spear RC
    Toxicol Lett; 1991 May; 56(3):283-98. PubMed ID: 2035176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of exposure rate effects for benzene using a physiologically based pharmacokinetic model.
    Bois FY; Paxman DG
    Regul Toxicol Pharmacol; 1992 Apr; 15(2 Pt 1):122-36. PubMed ID: 1626064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro conjugation of benzene metabolites by human liver: potential influence of interindividual variability on benzene toxicity.
    Seaton MJ; Schlosser P; Medinsky MA
    Carcinogenesis; 1995 Jul; 16(7):1519-27. PubMed ID: 7614685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetic interaction between benzene metabolites, phenol and hydroquinone, in B6C3F1 mice.
    Legathe A; Hoener BA; Tozer TN
    Toxicol Appl Pharmacol; 1994 Jan; 124(1):131-8. PubMed ID: 8291054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzene and phenol metabolism by mouse and rat liver microsomes.
    Schlosser PM; Bond JA; Medinsky MA
    Carcinogenesis; 1993 Dec; 14(12):2477-86. PubMed ID: 8269615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic increase in chromosomal breakage within the euchromatin induced by an interaction of the benzene metabolites phenol and hydroquinone in mice.
    Chen H; Eastmond DA
    Carcinogenesis; 1995 Aug; 16(8):1963-9. PubMed ID: 7543378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiological model for simulation of benzene metabolism by rats and mice.
    Medinsky MA; Sabourin PJ; Lucier G; Birnbaum LS; Henderson RF
    Toxicol Appl Pharmacol; 1989 Jun; 99(2):193-206. PubMed ID: 2734786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzene: a case study in parent chemical and metabolite interactions.
    Medinsky MA; Kenyon EM; Schlosser PM
    Toxicology; 1995 Dec; 105(2-3):225-33. PubMed ID: 8571360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone.
    Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity.
    Subrahmanyam VV; Doane-Setzer P; Steinmetz KL; Ross D; Smith MT
    Toxicology; 1990 May; 62(1):107-16. PubMed ID: 2343455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure.
    Eastmond DA; Smith MT; Irons RD
    Toxicol Appl Pharmacol; 1987 Oct; 91(1):85-95. PubMed ID: 2823417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of quinol thioethers in bone marrow of hydroquinone/phenol-treated rats and mice and their potential role in benzene-mediated hematotoxicity.
    Bratton SB; Lau SS; Monks TJ
    Chem Res Toxicol; 1997 Aug; 10(8):859-65. PubMed ID: 9282834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the metabolism and disposition of inhaled [3H]benzene by F344/N rats and B6C3F1 mice.
    Sabourin PJ; Bechtold WE; Birnbaum LS; Lucier G; Henderson RF
    Toxicol Appl Pharmacol; 1988 Jun; 94(1):128-40. PubMed ID: 3376110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone.
    Nerland DE; Pierce WM
    Drug Metab Dispos; 1990; 18(6):958-61. PubMed ID: 1981544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between benzene toxicity and the disposition of 14C-labelled benzene metabolites in the rat.
    Greenlee WF; Gross EA; Irons RD
    Chem Biol Interact; 1981 Jan; 33(2-3):285-99. PubMed ID: 7460069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exposure concentration, exposure rate, and route of administration on metabolism of benzene by F344 rats and B6C3F1 mice.
    Sabourin PJ; Bechtold WE; Griffith WC; Birnbaum LS; Lucier G; Henderson RF
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):421-44. PubMed ID: 2749731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic considerations in benzene physiological model development.
    Medinsky MA; Kenyon EM; Seaton MJ; Schlosser PM
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1399-404. PubMed ID: 9118926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human.
    Brodfuehrer JI; Chapman DE; Wilke TJ; Powis G
    Drug Metab Dispos; 1990; 18(1):20-7. PubMed ID: 1970773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo.
    Kolachana P; Subrahmanyam VV; Meyer KB; Zhang L; Smith MT
    Cancer Res; 1993 Mar; 53(5):1023-6. PubMed ID: 8439949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-, route-, and sex-dependent urinary excretion of phenol metabolites in B6C3F1 mice.
    Kenyon EM; Seeley ME; Janszen D; Medinsky MA
    J Toxicol Environ Health; 1995 Feb; 44(2):219-33. PubMed ID: 7853423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.