These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20351844)

  • 1. Assumptions management in simulation of infectious disease outbreaks.
    Eriksson H; Morin M; Ekberg J; Jenvald J; Timpka T
    AMIA Annu Symp Proc; 2009 Nov; 2009():173-7. PubMed ID: 20351844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontology based modeling of pandemic simulation scenarios.
    Eriksson H; Morin M; Jenvald J; Gursky E; Holm E; Timpka T
    Stud Health Technol Inform; 2007; 129(Pt 1):755-9. PubMed ID: 17911818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of precautionary behaviors during outbreaks of pandemic influenza: modeling of regional differences.
    Ekberg J; Eriksson H; Morin M; Holm E; Strömgren M; Timpka T
    AMIA Annu Symp Proc; 2009 Nov; 2009():163-7. PubMed ID: 20351842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States.
    Sellman S; Tildesley MJ; Burdett CL; Miller RS; Hallman C; Webb CT; Wennergren U; Portacci K; Lindström T
    PLoS Comput Biol; 2020 Feb; 16(2):e1007641. PubMed ID: 32078622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An infectious way to teach students about outbreaks.
    Cremin Í; Watson O; Heffernan A; Imai N; Ahmed N; Bivegete S; Kimani T; Kyriacou D; Mahadevan P; Mustafa R; Pagoni P; Sophiea M; Whittaker C; Beacroft L; Riley S; Fisher MC
    Epidemics; 2018 Jun; 23():42-48. PubMed ID: 29289499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and inference of R0 of an infectious pathogen by a removal method.
    Ferrari MJ; Bjørnstad ON; Dobson AP
    Math Biosci; 2005 Nov; 198(1):14-26. PubMed ID: 16216286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Apollo Structured Vocabulary: an OWL2 ontology of phenomena in infectious disease epidemiology and population biology for use in epidemic simulation.
    Hogan WR; Wagner MM; Brochhausen M; Levander J; Brown ST; Millett N; DePasse J; Hanna J
    J Biomed Semantics; 2016 Aug; 7():50. PubMed ID: 27538448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Multicore Processing for Pandemic Influenza Simulation.
    Eriksson H; Timpka T; Spreco A; Dahlström Ö; Strömgren M; Holm E
    AMIA Annu Symp Proc; 2016; 2016():534-540. PubMed ID: 28269849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flexible Simulation Architecture for Pandemic Influenza Simulation.
    Eriksson H; Timpka T; Ekberg J; Spreco A; Dahlström Ö; Strömgren M; Holm E
    AMIA Annu Symp Proc; 2015; 2015():533-42. PubMed ID: 26958187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-driven spatial-temporal outbreak simulation for outbreak detection evaluation.
    Zhang M; Wallstrom GL
    AMIA Annu Symp Proc; 2008 Nov; 2008():854-8. PubMed ID: 18999301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An open-data-driven agent-based model to simulate infectious disease outbreaks.
    Hunter E; Mac Namee B; Kelleher J
    PLoS One; 2018; 13(12):e0208775. PubMed ID: 30566424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What is the best control strategy for multiple infectious disease outbreaks?
    Handel A; Longini IM; Antia R
    Proc Biol Sci; 2007 Mar; 274(1611):833-7. PubMed ID: 17251095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MODELING A MORBILLIVIRUS OUTBREAK IN HAWAIIAN MONK SEALS (NEOMONACHUS SCHAUINSLANDI) TO AID IN THE DESIGN OF MITIGATION PROGRAMS.
    Baker JD; Harting AL; Barbieri MM; Robinson SJ; Gulland FMD; Littnan CL
    J Wildl Dis; 2017 Oct; 53(4):736-748. PubMed ID: 28463627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying optimal control theory to complex epidemiological models to inform real-world disease management.
    Bussell EH; Dangerfield CE; Gilligan CA; Cunniffe NJ
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1776):20180284. PubMed ID: 31104600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a scrapie outbreak in a flock of Romanov sheep--estimation of transmission parameters.
    Hagenaars TJ; Donnelly CA; Ferguson NM; Anderson RM
    Epidemiol Infect; 2003 Oct; 131(2):1015-22. PubMed ID: 14596544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic, spatially-explicit epidemic models.
    Carpenter TE
    Rev Sci Tech; 2011 Aug; 30(2):417-24. PubMed ID: 21961214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of computerized models to reduce the consequences of major outbreaks of food-borne illness.
    Jaine AM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep; 25(9):1067-75. PubMed ID: 18798035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation of Real-Time Infectious Disease Modeling into Routine Public Health Practice.
    Muscatello DJ; Chughtai AA; Heywood A; Gardner LM; Heslop DJ; MacIntyre CR
    Emerg Infect Dis; 2017 May; 23(5):. PubMed ID: 28418309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.