These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 20352279)
1. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Webster D; Wasserman E; Ehrbar M; Weber F; Bab I; Müller R Biomech Model Mechanobiol; 2010 Dec; 9(6):737-47. PubMed ID: 20352279 [TBL] [Abstract][Full Text] [Related]
2. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Webster D; Wirth A; van Lenthe GH; Müller R Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383 [TBL] [Abstract][Full Text] [Related]
3. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411 [TBL] [Abstract][Full Text] [Related]
4. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292 [TBL] [Abstract][Full Text] [Related]
5. Mechanical loading-induced gene expression and BMD changes are different in two inbred mouse strains. Kesavan C; Mohan S; Oberholtzer S; Wergedal JE; Baylink DJ J Appl Physiol (1985); 2005 Nov; 99(5):1951-7. PubMed ID: 16024522 [TBL] [Abstract][Full Text] [Related]
6. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements. Wang ML; Massie J; Perry A; Garfin SR; Kim CW Spine J; 2007; 7(4):466-74. PubMed ID: 17630145 [TBL] [Abstract][Full Text] [Related]
7. Percolation theory relates corticocancellous architecture to mechanical function in vertebrae of inbred mouse strains. Tommasini SM; Wearne SL; Hof PR; Jepsen KJ Bone; 2008 Apr; 42(4):743-50. PubMed ID: 18258502 [TBL] [Abstract][Full Text] [Related]
8. A novel in vivo mouse model for mechanically stimulated bone adaptation--a combined experimental and computational validation study. Webster DJ; Morley PL; van Lenthe GH; Müller R Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):435-41. PubMed ID: 18612871 [TBL] [Abstract][Full Text] [Related]
9. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164 [TBL] [Abstract][Full Text] [Related]
10. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice. Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891 [TBL] [Abstract][Full Text] [Related]
12. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Marenzana M; De Souza RL; Chenu C Bone; 2007 Aug; 41(2):206-15. PubMed ID: 17543595 [TBL] [Abstract][Full Text] [Related]
13. Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. Bouxsein ML; Uchiyama T; Rosen CJ; Shultz KL; Donahue LR; Turner CH; Sen S; Churchill GA; Müller R; Beamer WG J Bone Miner Res; 2004 Apr; 19(4):587-99. PubMed ID: 15005846 [TBL] [Abstract][Full Text] [Related]
14. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography. Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010 [TBL] [Abstract][Full Text] [Related]
15. Bone quality and bone strength in BXH recombinant inbred mice. Ng AH; Wang SX; Turner CH; Beamer WG; Grynpas MD Calcif Tissue Int; 2007 Sep; 81(3):215-23. PubMed ID: 17638038 [TBL] [Abstract][Full Text] [Related]
16. Site specific bone adaptation response to mechanical loading. Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268 [TBL] [Abstract][Full Text] [Related]
17. Regulation of bone volume is different in the metaphyses of the femur and vertebra of C3H/HeJ and C57BL/6J mice. Sheng MH; Baylink DJ; Beamer WG; Donahue LR; Lau KH; Wergedal JE Bone; 2002 Mar; 30(3):486-91. PubMed ID: 11882462 [TBL] [Abstract][Full Text] [Related]
18. Genetic effects on bone mechanotransduction in congenic mice harboring bone size and strength quantitative trait loci. Robling AG; Warden SJ; Shultz KL; Beamer WG; Turner CH J Bone Miner Res; 2007 Jul; 22(7):984-91. PubMed ID: 17371164 [TBL] [Abstract][Full Text] [Related]
19. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278 [TBL] [Abstract][Full Text] [Related]
20. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. Turner CH; Hsieh YF; Müller R; Bouxsein ML; Baylink DJ; Rosen CJ; Grynpas MD; Donahue LR; Beamer WG J Bone Miner Res; 2000 Jun; 15(6):1126-31. PubMed ID: 10841181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]