BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20352336)

  • 21. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow.
    Wang T; Xing Z
    Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanotransduction of flow-induced shear stress by endothelial glycocalyx fibers is torque determined.
    Liu X; Fan Y; Deng X
    ASAIO J; 2011; 57(6):487-94. PubMed ID: 21989421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation.
    Hogan B; Shen Z; Zhang H; Misbah C; Barakat AI
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1095-1109. PubMed ID: 30840162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast response characteristics of red blood cell aggregation.
    Kaliviotis E; Yianneskis M
    Biorheology; 2008; 45(6):639-49. PubMed ID: 19065011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of lanthanides on red blood cell deformability and response to mechanical stress: role of lanthanide ionic radius.
    Alexy T; Baskurt OK; Nemeth N; Uyuklu M; Wenby RB; Meiselman HJ
    Biorheology; 2011; 48(3-4):173-83. PubMed ID: 22156032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress.
    Lee SS; Antaki JF; Kameneva MV; Dobbe JG; Hardeman MR; Ahn KH; Lee SJ
    Artif Organs; 2007 Jan; 31(1):80-6. PubMed ID: 17209965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.
    Xiao L; Liu Y; Chen S; Fu B
    Cell Biochem Biophys; 2016 Dec; 74(4):513-525. PubMed ID: 27704373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells.
    Wang W
    J Biomech Eng; 2007 Jun; 129(3):324-9. PubMed ID: 17536899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules.
    Bishop JJ; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H1985-96. PubMed ID: 12384477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distributions of wall shear stress in venular convergences of mouse cremaster muscle.
    Kim MB; Sarelius IH
    Microcirculation; 2003 Apr; 10(2):167-78. PubMed ID: 12700585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology.
    Bransky A; Korin N; Nemirovski Y; Dinnar U
    Biosens Bioelectron; 2006 Aug; 22(2):165-9. PubMed ID: 16426836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermittent stops of shear reduce the mechanical damage of red blood cells.
    Mizunuma H; Sakai S
    Artif Organs; 2007 Jun; 31(6):472-5. PubMed ID: 17537060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics.
    Xiao LL; Chen S; Lin CS; Liu Y
    Mol Cell Biomech; 2014 Mar; 11(1):67-85. PubMed ID: 25330624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.