BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20352625)

  • 1. Balancing robust quantification and identification for iTRAQ: application of UHR-ToF MS.
    Ow SY; Noirel J; Salim M; Evans C; Watson R; Wright PC
    Proteomics; 2010 Jun; 10(11):2205-13. PubMed ID: 20352625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research.
    Wiese S; Reidegeld KA; Meyer HE; Warscheid B
    Proteomics; 2007 Feb; 7(3):340-50. PubMed ID: 17177251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap.
    Mischerikow N; van Nierop P; Li KW; Bernstein HG; Smit AB; Heck AJ; Altelaar AF
    Analyst; 2010 Oct; 135(10):2643-52. PubMed ID: 20714520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics.
    Fagerquist CK; Garbus BR; Miller WG; Williams KE; Yee E; Bates AH; Boyle S; Harden LA; Cooley MB; Mandrell RE
    Anal Chem; 2010 Apr; 82(7):2717-25. PubMed ID: 20232878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all.
    Köcher T; Pichler P; Schutzbier M; Stingl C; Kaul A; Teucher N; Hasenfuss G; Penninger JM; Mechtler K
    J Proteome Res; 2009 Oct; 8(10):4743-52. PubMed ID: 19663507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-energy C-trap dissociation for peptide modification analysis.
    Olsen JV; Macek B; Lange O; Makarov A; Horning S; Mann M
    Nat Methods; 2007 Sep; 4(9):709-12. PubMed ID: 17721543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry.
    Menin L; Perchuć A; Favreau P; Perret F; Michalet S; Schöni R; Wilmer M; Stöcklin R
    Toxicon; 2008 Jun; 51(7):1288-302. PubMed ID: 18471845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Top-down' characterization of site-directed mutagenesis products of Staphylococcus aureus dihydroneopterin aldolase by multistage tandem mass spectrometry in a linear quadrupole ion trap.
    Scherperel G; Yan H; Wang Y; Reid GE
    Analyst; 2006 Feb; 131(2):291-302. PubMed ID: 16440096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cysteinylation of pharmaceutical-grade human serum albumin by electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry.
    Kleinova M; Belgacem O; Pock K; Rizzi A; Buchacher A; Allmaier G
    Rapid Commun Mass Spectrom; 2005; 19(20):2965-73. PubMed ID: 16178042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantify this! Report on a round table discussion on quantitative mass spectrometry in proteomics.
    Quadroni M; Ducret A; Stöcklin R
    Proteomics; 2004 Aug; 4(8):2211-5. PubMed ID: 15274113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized fragmentation conditions for iTRAQ-labeled phosphopeptides.
    Linke D; Hung CW; Cassidy L; Tholey A
    J Proteome Res; 2013 Jun; 12(6):2755-63. PubMed ID: 23668714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion activation methods for tandem mass spectrometry.
    Sleno L; Volmer DA
    J Mass Spectrom; 2004 Oct; 39(10):1091-112. PubMed ID: 15481084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of mass spectrometry data in proteomics.
    Matthiesen R; Jensen ON
    Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated protein identification by the combination of MALDI MS and MS/MS spectra from different instruments.
    Levander F; James P
    J Proteome Res; 2005; 4(1):71-4. PubMed ID: 15707359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem parallel fragmentation of peptides for mass spectrometry.
    Ramos AA; Yang H; Rosen LE; Yao X
    Anal Chem; 2006 Sep; 78(18):6391-7. PubMed ID: 16970313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets.
    Alcolea MP; Kleiner O; Cutillas PR
    J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of liquid chromatography/tandem mass spectrometry and online databases for identification of phosphocholines and lysophosphatidylcholines in human red blood cells.
    Xu F; Zou L; Lin Q; Ong CN
    Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3243-54. PubMed ID: 19725045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging.
    Shui W; Liu Y; Fan H; Bao H; Liang S; Yang P; Chen X
    J Proteome Res; 2005; 4(1):83-90. PubMed ID: 15707361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.