These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2035268)

  • 1. The Aubert-Fleischl paradox does appear in visually induced self-motion.
    de Graaf B; Wertheim AH; Bles W
    Vision Res; 1991; 31(5):845-9. PubMed ID: 2035268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular velocity, not temporal frequency determines circular vection.
    de Graaf B; Wertheim AH; Bles W; Kremers J
    Vision Res; 1990; 30(4):637-46. PubMed ID: 2339516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of spatial arrangement of visual stimulus on inverted self-motion perception induced by the foreground motion: examination of OKN-suppression hypothesis.
    Nakamura S
    Vision Res; 2004; 44(16):1951-60. PubMed ID: 15145688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced motion considered as a visually induced oculogyral illusion.
    Post RB
    Perception; 1986; 15(2):131-8. PubMed ID: 3774484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-down asymmetry in vertical vection.
    Seya Y; Shinoda H; Nakaura Y
    Vision Res; 2015 Dec; 117():16-24. PubMed ID: 26518744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced motion and optokinetic afternystagmus: parallel response dynamics with prolonged stimulation.
    Heckmann T; Post RB
    Vision Res; 1988; 28(6):681-94. PubMed ID: 3227646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optokinetic and vection responses to apparent motion in man.
    Schor CM; Lakshminarayanan V; Narayan V
    Vision Res; 1984; 24(10):1181-7. PubMed ID: 6523741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which retinal and extra-retinal information is crucial for circular vection?
    Mergner T; Wertheim A; Rumberger A
    Arch Ital Biol; 2000 Apr; 138(2):123-38. PubMed ID: 10782254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of gravitoinertial force variations on vertical gaze direction during oculomotor reflexes and visual fixation.
    Clément G; Andre-Deshays C; Lathan CE
    Aviat Space Environ Med; 1989 Dec; 60(12):1194-8. PubMed ID: 2604675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optokinetic potential and the perception of head-centred speed.
    Sumnall JH; Freeman TC; Snowden RJ
    Vision Res; 2003 Jul; 43(16):1709-18. PubMed ID: 12818340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained deviation of gaze direction can affect "inverted vection" induced by the foreground motion.
    Nakamura S; Shimojo S
    Vision Res; 2003 Mar; 43(7):745-9. PubMed ID: 12639600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optokinetic torsion: dynamics and relation to circularvection.
    Cheung BS; Howard IP
    Vision Res; 1991; 31(7-8):1327-35. PubMed ID: 1891821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in horizontal oculomotor behaviour coincide with a shift in visual motion perception.
    Thilo KV; Guerraz M; Bronstein AM; Gresty MA
    Neuroreport; 2000 Jun; 11(9):1987-90. PubMed ID: 10884057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow eye movements induced by apparent target motion in monkey.
    Waespe W; Schwarz U
    Exp Brain Res; 1987; 67(2):433-5. PubMed ID: 3622700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optokinetic stimuli: motion sickness, visual acuity, and eye movements.
    Webb NA; Griffin MJ
    Aviat Space Environ Med; 2002 Apr; 73(4):351-8. PubMed ID: 11952055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study.
    Dieterich M; Bucher SF; Seelos KC; Brandt T
    Brain; 1998 Aug; 121 ( Pt 8)():1479-95. PubMed ID: 9712010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze strategies during linear motion in head-free humans.
    Borel L; Le Goff B; Charade O; Berthoz A
    J Neurophysiol; 1994 Nov; 72(5):2451-66. PubMed ID: 7884471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eccentric gaze dynamics enhance vection in depth.
    Kim J; Palmisano S
    J Vis; 2010 Oct; 10(12):7. PubMed ID: 21047739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of fixation on circular vection.
    Fushiki H; Takata S; Watanabe Y
    J Vestib Res; 2000; 10(3):151-5. PubMed ID: 11052153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear vection as a function of stimulus eccentricity, visual angle, and fixation.
    Tarita-Nistor L; González EG; Spigelman AJ; Steinbach MJ
    J Vestib Res; 2006; 16(6):265-72. PubMed ID: 17726279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.