These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20352734)

  • 21. Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method.
    Li Y; Wang J; Zhang Y; Banis MN; Liu J; Geng D; Li R; Sun X
    J Colloid Interface Sci; 2012 Mar; 369(1):123-8. PubMed ID: 22221341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrothermal synthesis of PbS hollow spheres with single crystal-like electron diffraction patterns.
    Zhao P; Wang J; Chen G; Xiao Z; Zhou J; Chen D; Huang K
    J Nanosci Nanotechnol; 2008 Jan; 8(1):379-85. PubMed ID: 18468086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of reduced graphene oxide decorated with CeO
    Ojha GP; Pant B; Park SJ; Park M; Kim HY
    J Colloid Interface Sci; 2017 May; 494():338-344. PubMed ID: 28167422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods.
    Mao Y; Wong SS
    J Am Chem Soc; 2004 Nov; 126(46):15245-52. PubMed ID: 15548021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route.
    Du J; Zhang J; Liu Z; Han B; Jiang T; Huang Y
    Langmuir; 2006 Jan; 22(3):1307-12. PubMed ID: 16430298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Easily controllable synthesis of alpha-MoO3 nanobelts and MoO2 microaxletrees through one-pot hydrothermal route.
    Hu H; Xu J; Deng C; Ge X
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4462-8. PubMed ID: 24738413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of copper oxide nanostructures with controllable morphology by microwave-assisted method.
    Yan S; Shen K; Zhang Y; Zhang Y; Xiao Z
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4886-91. PubMed ID: 19928165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.
    Mu B; Zhang W; Shao S; Wang A
    Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: synthesis, characterization, and optical properties.
    Refat NM; Nassar MY; Sadeek SA
    RSC Adv; 2022 Aug; 12(38):25081-25095. PubMed ID: 36199874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-cost nanowired α-MnO
    Majidi MR; Shahbazi Farahani F; Hosseini M; Ahadzadeh I
    Bioelectrochemistry; 2019 Feb; 125():38-45. PubMed ID: 30261369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Annealing effect on structural and optical properties of hydrothermally synthesized TiO2 nanowires.
    Hadia NM
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5574-80. PubMed ID: 24758068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of synthesis temperature on the crystal structure and electrode property of sulfur-doped manganese oxide nanowires.
    Park DH; Kim TW; Oh EJ; Hwang SJ
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5489-93. PubMed ID: 19198483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrothermal Synthesis of MnO
    Lu M; Ma Y; Li D; Jiang M; Yu C
    ACS Omega; 2023 Dec; 8(51):49150-49157. PubMed ID: 38162731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple route towards CuO nanowires and nanorods.
    Cao M; Wang Y; Guo C; Qi Y; Hu C; Wang E
    J Nanosci Nanotechnol; 2004 Sep; 4(7):824-8. PubMed ID: 15570966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.
    Wang HY; Xiao FX; Yu L; Liu B; Lou XW
    Small; 2014 Aug; 10(15):3181-6. PubMed ID: 24711308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis.
    Gao T; Fjellvåg H; Norby P
    Nanotechnology; 2009 Feb; 20(5):055610. PubMed ID: 19417357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyaniline-intercalated layered vanadium oxide nanocomposites--one-pot hydrothermal synthesis and application in lithium battery.
    Chen Y; Yang G; Zhang Z; Yang X; Hou W; Zhu JJ
    Nanoscale; 2010 Oct; 2(10):2131-8. PubMed ID: 20835437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.
    Feng L; Xuan Z; Zhao H; Bai Y; Guo J; Su CW; Chen X
    Nanoscale Res Lett; 2014; 9(1):290. PubMed ID: 24982603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties.
    Javed Q; Wang FP; Rafique MY; Toufiq AM; Li QS; Mahmood H; Khan W
    Nanotechnology; 2012 Oct; 23(41):415603. PubMed ID: 23011093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.