These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20352803)

  • 1. Reclamation system design of nanostructured coatings of touch-panel.
    Pa PS
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1381-6. PubMed ID: 20352803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a twins-oval tool in a precise nanostructure reclamation of digital paper displays.
    Pa PS
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4851-7. PubMed ID: 19928161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reclaiming process for solar cell silicon wafer surfaces.
    Pa PS
    J Nanosci Nanotechnol; 2011 Jan; 11(1):691-5. PubMed ID: 21446525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and theoretical study of the optical and electrical properties of nanostructured indium tin oxide fabricated by oblique-angle deposition.
    Sood AW; Poxson DJ; Mont FW; Chhajed S; Cho J; Schubert EF; Welser RE; Dhar NK; Sood AK
    J Nanosci Nanotechnol; 2012 May; 12(5):3950-3. PubMed ID: 22852330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells.
    Kim HJ; Ko EH; Noh YJ; Na SI; Kim HK
    Sci Rep; 2016 Sep; 6():33533. PubMed ID: 27640723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates.
    Richardson BJ; Zhu L; Yu Q
    Nanotechnology; 2017 Apr; 28(16):165401. PubMed ID: 28248194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells.
    Rider DA; Tucker RT; Worfolk BJ; Krause KM; Lalany A; Brett MJ; Buriak JM; Harris KD
    Nanotechnology; 2011 Feb; 22(8):085706. PubMed ID: 21242635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional nanobranched indium-tin-oxide anode for organic solar cells.
    Yu HK; Dong WJ; Jung GH; Lee JL
    ACS Nano; 2011 Oct; 5(10):8026-32. PubMed ID: 21899325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Device performances of organic light-emitting diodes with indium tin oxide, gallium zinc oxide, and indium zinc tin oxide anodes deposited at room temperature.
    Lee C; Ko Y; Kim Y
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8011-5. PubMed ID: 24266182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure.
    Zhou Y; Shim JW; Fuentes-Hernandez C; Sharma A; Knauer KA; Giordano AJ; Marder SR; Kippelen B
    Phys Chem Chem Phys; 2012 Sep; 14(34):12014-21. PubMed ID: 22850620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superflexibility of ITO Electrodes via Submicron Patterning.
    Dong Q; Hara Y; Vrouwenvelder KT; Shin KT; Compiano JA; Saif M; Lopez R
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10339-10346. PubMed ID: 29510021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light extraction enhancement of organic light-emitting diodes using aluminum zinc oxide embedded anodes.
    Hsu CM; Lin BT; Zeng YX; Lin WM; Wu WT
    Opt Express; 2014 Dec; 22 Suppl 7():A1695-700. PubMed ID: 25607483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the deposition parameters for optimizing the faradaic and non-faradaic electrochemical performance of nanowire array-shaped ITO electrodes prepared by electron beam evaporation.
    Pruna R; López M; Teixidor F
    Nanoscale; 2018 Dec; 11(1):276-284. PubMed ID: 30534714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes.
    Shin S; Yang M; Guo LJ; Youn H
    Small; 2013 Dec; 9(23):4036-44. PubMed ID: 23784859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous plasma and thermal treatments of ITO surfaces for organic solar cells.
    Kim J; Kim NH; Kim H; Jung D; Chae H
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6490-3. PubMed ID: 22121742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications.
    Ballarin B; Cassani MC; Maccato C; Gasparotto A
    Nanotechnology; 2011 Jul; 22(27):275711. PubMed ID: 21606565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications.
    Hong CH; Shin JH; Ju BK; Kim KH; Park NM; Kim BS; Cheong WS
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7756-9. PubMed ID: 24245328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical modification of indium tin oxide using di(4-nitrophenyl) iodonium tetrafluoroborate.
    Charlton MR; Suhr KJ; Holliday BJ; Stevenson KJ
    Langmuir; 2015 Jan; 31(2):695-702. PubMed ID: 25526354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.