These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20352884)

  • 1. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.
    Xu P; Ji X; Qi J; Yang H; Zheng W; Abetz V; Jiang S; Shen J
    J Nanosci Nanotechnol; 2010 Jan; 10(1):508-13. PubMed ID: 20352884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films.
    Bennett RD; Hart AJ; Miller AC; Hammond PT; Irvine DJ; Cohen RE
    Langmuir; 2006 Sep; 22(20):8273-6. PubMed ID: 16981735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterning of Ag and Au nanoparticles by microcontact printing and block copolymer micelles.
    Xu P; Ji X; Abetz V; Jiang S
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1135-40. PubMed ID: 21456150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.
    Yoo H; Park S
    Nanotechnology; 2010 Jun; 21(24):245304. PubMed ID: 20498523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing.
    Mehlich J; Miyata Y; Shinohara H; Ravoo BJ
    Small; 2012 Jul; 8(14):2258-63. PubMed ID: 22511338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.
    Cho H; Yoo H; Park S
    Langmuir; 2010 May; 26(10):7451-7. PubMed ID: 20000759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate Patterning Using Regular Macroporous Block Copolymer Monoliths as Sacrificial Templates and as Capillary Microstamps.
    Guo L; Philippi M; Steinhart M
    Small; 2018 Aug; 14(34):e1801452. PubMed ID: 30027622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films.
    Park H; Kim JU; Park S
    Nanoscale; 2012 Feb; 4(4):1362-7. PubMed ID: 22241398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step route to the fabrication of highly porous polyaniline nanofiber films by using PS-b-PVP diblock copolymers as templates.
    Li X; Tian S; Ping Y; Kim DH; Knoll W
    Langmuir; 2005 Oct; 21(21):9393-7. PubMed ID: 16207010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive microCP on ultrathin block copolymer films: investigation of the microCP mechanism and application to sub-microm (bio)molecular patterning.
    Feng CL; Vancso GJ; Schönherr H
    Langmuir; 2007 Jan; 23(3):1131-40. PubMed ID: 17241023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.
    Gu Y; St-Pierre J; Ploehn HJ
    Langmuir; 2008 Nov; 24(21):12680-9. PubMed ID: 18837528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform fe(2)o(3) nanoclusters synthesized using diblock copolymer micelles.
    Fu Q; Huang S; Liu J
    J Phys Chem B; 2004 May; 108(20):6124-9. PubMed ID: 18950091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniformly gold nanoparticles derived from P2VP-b-PCHMA block copolymer templates with different reduction methods.
    Xu P; Ji X; Abetz V; Jiang S
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6973-8. PubMed ID: 22103108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned array of nanoparticles on substrates via contact printing method with CNTs/AAO stamp.
    Kim YS; Ahn HJ; Nam SH; Lee SH; Shim HS; Kim WB
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4803-7. PubMed ID: 19049112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcontact printing of dendrimers, proteins, and nanoparticles by porous stamps.
    Xu H; Ling XY; van Bennekom J; Duan X; Ludden MJ; Reinhoudt DN; Wessling M; Lammertink RG; Huskens J
    J Am Chem Soc; 2009 Jan; 131(2):797-803. PubMed ID: 19140799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcontact printing of laminin on oxygen plasma activated substrates for the alignment and growth of Schwann cells.
    Wang DY; Huang YC; Chiang H; Wo AM; Huang YY
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):447-53. PubMed ID: 16862562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of elastomeric stamps for microcontact printing of polar inks.
    Sadhu VB; Perl A; Péter M; Rozkiewicz DI; Engbers G; Ravoo BJ; Reinhoudt DN; Huskens J
    Langmuir; 2007 Jun; 23(12):6850-5. PubMed ID: 17480107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning block copolymer aggregates via Langmuir-Blodgett transfer to microcontact-printed substrates.
    Harirchian-Saei S; Wang MC; Gates BD; Moffitt MG
    Langmuir; 2010 Apr; 26(8):5998-6008. PubMed ID: 20334416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.