These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20353079)

  • 1. [Effects of exoelectrogens and electron acceptors on the performance of microbial fuel cells].
    Li FX; Zhou QX; Li BK
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3070-4. PubMed ID: 20353079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review.
    He CS; Mu ZX; Yang HY; Wang YZ; Mu Y; Yu HQ
    Chemosphere; 2015 Dec; 140():12-7. PubMed ID: 25907762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial fuel cells: novel biotechnology for energy generation.
    Rabaey K; Verstraete W
    Trends Biotechnol; 2005 Jun; 23(6):291-8. PubMed ID: 15922081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
    Du Z; Li H; Gu T
    Biotechnol Adv; 2007; 25(5):464-82. PubMed ID: 17582720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen from a microbial fuel cell.
    Booth B
    Environ Sci Technol; 2005 Jun; 39(11):235A. PubMed ID: 15984757
    [No Abstract]   [Full Text] [Related]  

  • 10. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.
    Wang X; Li J; Wang Z; Tursun H; Liu R; Gao Y; Li Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20368-20377. PubMed ID: 27449020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrilotriacetic acid degradation under microbial fuel cell environment.
    Jang JK; Chang IS; Moon H; Kang KH; Kim BH
    Biotechnol Bioeng; 2006 Nov; 95(4):772-4. PubMed ID: 16958138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Performance of Electricity Generation and Feasibility of Discontinuous Power Supply of MFC by Using Pretreated Excess Sludge as Fuel].
    Zhao YH; Zhao YG; Guo L
    Huan Jing Ke Xue; 2016 Mar; 37(3):1156-62. PubMed ID: 27337913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electricity generation and quinoline degradation of pure strains and mixed strains in the microbial fuel cell].
    Chen SS; Zhang CP; Liu GL; Zhang RD; Li MC; Quan XC
    Huan Jing Ke Xue; 2010 Sep; 31(9):2148-54. PubMed ID: 21072938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Treatment of Cu(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate].
    Liang M; Tao HC; Li SF; Li W; Zhang LJ; Ni JR
    Huan Jing Ke Xue; 2011 Jan; 32(1):179-85. PubMed ID: 21404684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate.
    Xin X; Hong J; Liu Y
    Sci Total Environ; 2019 Jun; 670():50-58. PubMed ID: 30903902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance.
    Yi T; Harper WF
    Water Environ Res; 2009 Nov; 81(11):2320-8. PubMed ID: 19957763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation.
    Hou B; Sun J; Hu Y
    Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells.
    Huang H; Cheng S; Li F; Mao Z; Lin Z; Cen K
    Chemosphere; 2019 Jun; 225():548-556. PubMed ID: 30901649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.