These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20353232)

  • 1. Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes.
    Pan Q; Wang M
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):420-3. PubMed ID: 20353232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process.
    Lee S; Kang JH; Lee SJ; Hwang W
    Lab Chip; 2009 Aug; 9(15):2234-7. PubMed ID: 19606302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic engineering materials provide a rapid and simple route for highly efficient self-driven crude oil spill cleanup.
    Xu H; Bao S; Gong L; Ma R; Pan L; Li Y; Zhao J
    RSC Adv; 2018 Nov; 8(67):38363-38369. PubMed ID: 35559063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic perpendicular nanopin film by the bottom-up process.
    Hosono E; Fujihara S; Honma I; Zhou H
    J Am Chem Soc; 2005 Oct; 127(39):13458-9. PubMed ID: 16190684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials.
    Cao L; Hu HH; Gao D
    Langmuir; 2007 Apr; 23(8):4310-4. PubMed ID: 17371061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
    Shirtcliffe NJ; McHale G; Newton MI; Zhang Y
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting study of patterned surfaces for superhydrophobicity.
    Bhushan B; Chae Jung Y
    Ultramicroscopy; 2007 Oct; 107(10-11):1033-41. PubMed ID: 17553620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.
    Kong LH; Chen XH; Yu LG; Wu ZS; Zhang PY
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2616-25. PubMed ID: 25590434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation.
    Wang C; Yao T; Wu J; Ma C; Fan Z; Wang Z; Cheng Y; Lin Q; Yang B
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2613-7. PubMed ID: 20356134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
    Balu B; Breedveld V; Hess DW
    Langmuir; 2008 May; 24(9):4785-90. PubMed ID: 18315020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.
    Hwang GB; Patir A; Page K; Lu Y; Allan E; Parkin IP
    Nanoscale; 2017 Jun; 9(22):7588-7594. PubMed ID: 28537617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.
    Qian B; Shen Z
    Langmuir; 2005 Sep; 21(20):9007-9. PubMed ID: 16171323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.
    Zhang X; Zhao J; Zhu Q; Chen N; Zhang M; Pan Q
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2630-6. PubMed ID: 21650460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic surface from Cu-Zn alloy by one step O2 concentration dependent etching.
    Wu W; Chen M; Liang S; Wang X; Chen J; Zhou F
    J Colloid Interface Sci; 2008 Oct; 326(2):478-82. PubMed ID: 18621380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes.
    Yohe ST; Freedman JD; Falde EJ; Colson YL; Grinstaff MW
    Adv Funct Mater; 2013 Aug; 23(29):3628-3637. PubMed ID: 25309305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates.
    Xu W; Liu H; Lu S; Xi J; Wang Y
    Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Movement of a Smart Miniature Submarine at Various Interfaces.
    Chu Y; Qin L; Zhen L; Pan Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24899-24904. PubMed ID: 29943972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching.
    Xiu Y; Zhang S; Yelundur V; Rohatgi A; Hess DW; Wong CP
    Langmuir; 2008 Sep; 24(18):10421-6. PubMed ID: 18710271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.