BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20353243)

  • 1. Structural characterization and biological fluid interaction of Sol-Gel-derived Mg-substituted biphasic calcium phosphate ceramics.
    Gomes S; Renaudin G; Jallot E; Nedelec JM
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):505-13. PubMed ID: 20353243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of magnesium doping on the phase transformation temperature of beta-TCP ceramics examined by Rietveld refinement.
    Enderle R; Götz-Neunhoeffer F; Göbbels M; Müller FA; Greil P
    Biomaterials; 2005 Jun; 26(17):3379-84. PubMed ID: 15621226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity.
    Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G
    Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study.
    Gomes S; Renaudin G; Mesbah A; Jallot E; Bonhomme C; Babonneau F; Nedelec JM
    Acta Biomater; 2010 Aug; 6(8):3264-74. PubMed ID: 20188871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics.
    Gomes S; Kaur A; Grenèche JM; Nedelec JM; Renaudin G
    Acta Biomater; 2017 Mar; 50():78-88. PubMed ID: 27965170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of magnesium doped biphasic calcium phosphate.
    Toibah AR; Sopyan I; Mel M
    Med J Malaysia; 2008 Jul; 63 Suppl A():83-4. PubMed ID: 19024995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate.
    Kannan S; Goetz-Neunhoeffer F; Neubauer J; Pina S; Torres PM; Ferreira JM
    Acta Biomater; 2010 Feb; 6(2):571-6. PubMed ID: 19679202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration.
    Weinand WR; Cruz JA; Medina AN; Lima WM; Sato F; da Silva Palacios R; Gibin MS; Volnistem EA; Rosso JM; Santos IA; Rohling JH; Bento AC; Baesso ML; da Silva CG; Dos Santos EX; Scatolim DB; Gavazzoni A; Queiroz AF; Companhoni MVP; Nakamura TU; Hernandes L; Bonadio TGM; Miranda LCM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121407. PubMed ID: 35636138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transforming the sintered ostrich cancellous bone to multiphasic calcium phosphate ceramic].
    Yang YW; Mao TQ; Sun MY; Chen FL; Chen SJ; Yang C
    Shanghai Kou Qiang Yi Xue; 2003 Aug; 12(4):277-80. PubMed ID: 14966641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation mechanism of the beta-TCP phase in synthetic fluorohydroxyapatite with different fluorine contents.
    Zhao H; Wang F; Chen X; Wei Z; Yu D; Jiang Z
    Biomed Mater; 2010 Aug; 5(4):045011. PubMed ID: 20644239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
    Nilen RW; Richter PW
    J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility.
    Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS
    Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.
    Frasnelli M; Sglavo VM
    Acta Biomater; 2016 Mar; 33():283-9. PubMed ID: 26796207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and mechanical performance of dense beta-TCP ceramics with/without magnesium substitution.
    Zhang X; Jiang F; Groth T; Vecchio KS
    J Mater Sci Mater Med; 2008 Sep; 19(9):3063-70. PubMed ID: 18392667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method.
    Kim HW; Koh YH; Kong YM; Kang JG; Kim HE
    J Mater Sci Mater Med; 2004 Oct; 15(10):1129-34. PubMed ID: 15516874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.
    Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.