BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20353254)

  • 1. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.
    Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM
    Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies.
    Wilcox RK
    J Biomech; 2007; 40(3):669-73. PubMed ID: 16584740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonlocal constitutive model for trabecular bone softening in compression.
    Charlebois M; Jirásek M; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):597-611. PubMed ID: 20238139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness.
    Stauber M; Rapillard L; van Lenthe GH; Zysset P; Müller R
    J Bone Miner Res; 2006 Apr; 21(4):586-95. PubMed ID: 16598379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of bisphosphonates on the mechanical efficiency of normal and osteopenic bones].
    Ferretti JL; Cointry GR; Capozza RF; Mondelo N; Peluffo V; Chiappe A; Meta M; Alippi RM
    Medicina (B Aires); 1997; 57 Suppl 1():83-92. PubMed ID: 9567360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial.
    Mawatari T; Miura H; Hamai S; Shuto T; Nakashima Y; Okazaki K; Kinukawa N; Sakai S; Hoffmann PF; Iwamoto Y; Keaveny TM
    Arthritis Rheum; 2008 Nov; 58(11):3340-9. PubMed ID: 18975334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate estimation of bone density improves the accuracy of subject-specific finite element models.
    Schileo E; Dall'ara E; Taddei F; Malandrino A; Schotkamp T; Baleani M; Viceconti M
    J Biomech; 2008 Aug; 41(11):2483-91. PubMed ID: 18606417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.