These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20353283)

  • 1. Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system.
    Mumford N; Duckworth J; Thomas PR; Shum D; Williams G; Wilson PH
    Brain Inj; 2010; 24(5):780-91. PubMed ID: 20353283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper-limb virtual rehabilitation for traumatic brain injury: a preliminary within-group evaluation of the elements system.
    Mumford N; Duckworth J; Thomas PR; Shum D; Williams G; Wilson PH
    Brain Inj; 2012; 26(2):166-76. PubMed ID: 22360522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of virtual reality in rehabilitation of movement in children with hemiplegia--a multiple case study evaluation.
    Green D; Wilson PH
    Disabil Rehabil; 2012; 34(7):593-604. PubMed ID: 21978233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research.
    Mumford N; Wilson PH
    Brain Inj; 2009 Mar; 23(3):179-91. PubMed ID: 19205954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment--a pilot study.
    Wille D; Eng K; Holper L; Chevrier E; Hauser Y; Kiper D; Pyk P; Schlegel S; Meyer-Heim A
    Dev Neurorehabil; 2009 Feb; 12(1):44-52. PubMed ID: 19283533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: a pilot study.
    Jacoby M; Averbuch S; Sacher Y; Katz N; Weiss PL; Kizony R
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):182-90. PubMed ID: 23292820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraint-induced movement therapy for children with hemiplegia after traumatic brain injury: a quantitative study.
    Cimolin V; Beretta E; Piccinini L; Turconi AC; Locatelli F; Galli M; Strazzer S
    J Head Trauma Rehabil; 2012; 27(3):177-87. PubMed ID: 21522025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis.
    Levin MF; Knaut LA; Magdalon EC; Subramanian S
    Stud Health Technol Inform; 2009; 145():94-108. PubMed ID: 19592789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a virtual reality system for the rehabilitation of the upper limb after stroke.
    Crosbie J; McDonough S; Lennon S; McNeill M
    Stud Health Technol Inform; 2005; 117():218-22. PubMed ID: 16282673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training with virtual visual feedback to alleviate phantom limb pain.
    Mercier C; Sirigu A
    Neurorehabil Neural Repair; 2009; 23(6):587-94. PubMed ID: 19171946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm.
    Dvorkin AY; Shahar M; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):133-6. PubMed ID: 16640465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality in the rehabilitation of the upper limb after stroke: the user's perspective.
    Crosbie JH; Lennon S; McNeill MD; McDonough SM
    Cyberpsychol Behav; 2006 Apr; 9(2):137-41. PubMed ID: 16640466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot study: Computer-based virtual anatomical interactivity for rehabilitation of individuals with chronic acquired brain injury.
    Simmons CD; Arthanat S; Macri VJ
    J Rehabil Res Dev; 2014; 51(3):377-90. PubMed ID: 25019661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A virtual reality system for the assessment and rehabilitation of the activities of daily living.
    Lee JH; Ku J; Cho W; Hahn WY; Kim IY; Lee SM; Kang Y; Kim DY; Yu T; Wiederhold BK; Wiederhold MD; Kim SI
    Cyberpsychol Behav; 2003 Aug; 6(4):383-8. PubMed ID: 14511450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using video-capture virtual reality for children with acquired brain injury.
    Bart O; Agam T; Weiss PL; Kizony R
    Disabil Rehabil; 2011; 33(17-18):1579-86. PubMed ID: 21174615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does intervention using virtual reality improve upper limb function in children with neurological impairment: a systematic review of the evidence.
    Galvin J; McDonald R; Catroppa C; Anderson V
    Brain Inj; 2011; 25(5):435-42. PubMed ID: 21401370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
    O'Neil RL; Skeel RL; Ustinova KI
    NeuroRehabilitation; 2013; 33(4):667-80. PubMed ID: 24018367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual enriched environments in paediatric neuropsychological rehabilitation following traumatic brain injury: Feasibility, benefits and challenges.
    Penn PR; Rose FD; Johnson DA
    Dev Neurorehabil; 2009 Feb; 12(1):32-43. PubMed ID: 19283532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic effectiveness of a virtual reality game in self-awareness after acquired brain injury.
    Lloréns R; Navarro MD; Alcañiz M; Noé E
    Stud Health Technol Inform; 2012; 181():297-301. PubMed ID: 22954875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome.
    Weightman A; Preston N; Levesley M; Holt R; Mon-Williams M; Clarke M; Cozens AJ; Bhakta B
    J Rehabil Med; 2011 Mar; 43(4):359-63. PubMed ID: 21347508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.