These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20353297)

  • 81. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation.
    Borges V; Nunes A; Ferreira R; Borrego MJ; Gomes JP
    J Bacteriol; 2012 Nov; 194(22):6143-53. PubMed ID: 22961851
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A chemical mutagenesis approach to identify virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis.
    Nguyen B; Valdivia R
    Methods Mol Biol; 2014; 1197():347-58. PubMed ID: 25172291
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The Hidden Genomics of Chlamydia trachomatis.
    Hadfield J; Bénard A; Domman D; Thomson N
    Curr Top Microbiol Immunol; 2018; 412():107-131. PubMed ID: 29071471
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The chlamydial anomaly clarified?
    Mohammadi T; Breukink E
    Chembiochem; 2014 Jul; 15(10):1391-2. PubMed ID: 24891214
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 86.
    Chowdhury SR; Reimer A; Sharan M; Kozjak-Pavlovic V; Eulalio A; Prusty BK; Fraunholz M; Karunakaran K; Rudel T
    J Cell Biol; 2017 Apr; 216(4):1071-1089. PubMed ID: 28330939
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Forward and Reverse Genetic Analysis of Chlamydia.
    Kędzior M; Bastidas RJ
    Methods Mol Biol; 2019; 2042():185-204. PubMed ID: 31385277
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Chlamydia trachomatis infection among antenatal women in Sydney.
    Cheney K; Chen MY; Donovan B
    Aust N Z J Public Health; 2006 Feb; 30(1):85-7. PubMed ID: 16502959
    [No Abstract]   [Full Text] [Related]  

  • 89. Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use.
    Raczniak G; Ibba M; Söll D
    Toxicology; 2001 Mar; 160(1-3):181-9. PubMed ID: 11246138
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chlamydia trachomatis, epidemiology and diagnosis.
    Ulstrup JC
    Acta Otolaryngol Suppl; 1984; 407():59-61. PubMed ID: 6388233
    [No Abstract]   [Full Text] [Related]  

  • 91. PGAP-X: extension on pan-genome analysis pipeline.
    Zhao Y; Sun C; Zhao D; Zhang Y; You Y; Jia X; Yang J; Wang L; Wang J; Fu H; Kang Y; Chen F; Yu J; Wu J; Xiao J
    BMC Genomics; 2018 Jan; 19(Suppl 1):36. PubMed ID: 29363431
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Generation of targeted Chlamydia trachomatis null mutants.
    Kari L; Goheen MM; Randall LB; Taylor LD; Carlson JH; Whitmire WM; Virok D; Rajaram K; Endresz V; McClarty G; Nelson DE; Caldwell HD
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7189-93. PubMed ID: 21482792
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Genetic Manipulation of Chlamydia trachomatis: Chromosomal Deletions.
    Wolf K; Rahnama M; Fields KA
    Methods Mol Biol; 2019; 2042():151-164. PubMed ID: 31385275
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Forward genetic approaches in Chlamydia trachomatis.
    Nguyen BD; Valdivia RH
    J Vis Exp; 2013 Oct; (80):e50636. PubMed ID: 24192560
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Bringing genetics to heretofore intractable obligate intracellular bacterial pathogens: Chlamydia and beyond.
    Ölander M; Sixt BS
    PLoS Pathog; 2022 Jul; 18(7):e1010669. PubMed ID: 35901011
    [No Abstract]   [Full Text] [Related]  

  • 96. Call for consensus in Chlamydia trachomatis nomenclature: moving from biovars, serovars, and serotypes to genovariants and genotypes.
    de Vries HJC; Pannekoek Y; Dean D; Bavoil PM; Borel N; Greub G; Morré SA;
    Clin Microbiol Infect; 2022 Jun; 28(6):761-763. PubMed ID: 35202789
    [No Abstract]   [Full Text] [Related]  

  • 97. 'Persistent' forms and persistence of Chlamydia.
    Pearce J; Gaston H; Deane K; Devitt A; Harper A; Jecock R
    Trends Microbiol; 1994 Jul; 2(7):257-9. PubMed ID: 7993446
    [No Abstract]   [Full Text] [Related]  

  • 98. Raphael Valdivia: how Chlamydia settles in.
    Valdivia R; Sedwick C
    J Cell Biol; 2014 Oct; 207(1):4-5. PubMed ID: 25313403
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The molecular pathogenesis of Chlamydia-induced arthritis: where do we stand?
    Rihl M; Zeidler H
    Curr Rheumatol Rep; 2007 Apr; 9(1):4-5. PubMed ID: 17437660
    [No Abstract]   [Full Text] [Related]  

  • 100. Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
    Key CE; Fisher DJ
    Methods Mol Biol; 2017; 1498():163-177. PubMed ID: 27709575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.